
Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

 i

Practical Android 4
Games Development

■ ■ ■

J. F. DiMarzio

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

http://conquerthenext.com/

Practical Android 4 Games Development

Copyright © 2011 by J. F. DiMarzio

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-4029-7

ISBN-13 (electronic): 978-1-4302-4030-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and
shared by Google and used according to terms described in the Creative Commons 3.0
Attribution License. Android and all Android and Google-based marks are trademarks or
registered trademarks of Google, Inc., in the U.S. and other countries. Apress Media, L.L.C. is not
affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: James Markham
Technical Reviewers: Yosun Chang, Tony Hillerson
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Morgan Engel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Heather Lang
Compositor: MacPS, LLC
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

This book is dedicated to my wife Suzannah and our three children,
Christian, Sophia, and Giovanni; for putting up with the late nights

and long weekends while I created this book.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

iv

Contents at a Glance

Contents .. v
Foreword ... ix
About the Author ... x
About the Technical Reviewers ... xi
About the Game Graphics Designer .. xii
Acknowledgments ... xiii
Preface ... xiv

Part I: Planning and Creating 2D Games .. 1�

■Chapter 1: Welcome to Android Gaming .. 3�

■Chapter 2: Star Fighter : A 2-D Shooter ... 15�

■Chapter 3: Press Start: Making a Menu .. 27�

■Chapter 4: Drawing The Environment .. 73�

■Chapter 5: Creating Your Character .. 119�

■Chapter 6: Adding the Enemies ... 159�

■Chapter 7: Adding Basic Enemy Artificial Intelligence 177�

■Chapter 8: Defend Yourself! .. 207�

■Chapter 9: Publishing Your Game .. 243�

Part II: Creating 3D Games ... 253�

■Chapter 10: Blob Hunter: Creating 3-D Games .. 255�

■Chapter 11: Creating an Immersive Environment 271�

■Chapter 12: Navigating the 3-D Environment .. 287�

Index ... 301

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

v

Contents

Contents at a Glance .. iv�

Foreword ... ix�

About the Author ... x�

About the Technical Reviewers ... xi�
About the Game Graphics Designer .. xii�
Acknowledgments ... xiii�
Preface ... xiv

Part I: Planning and Creating 2D Games .. 1�

■Chapter 1: Welcome to Android Gaming .. 3�

Programming Android Games ... 4�

Starting with a Good Story .. 5�

Why Story Matters ... 6�

Writing Your Story .. 7�

The Road You’ll Travel .. 10�

Gathering Your Android Development Tools ... 10�

Installing OpenGL ES .. 12�

Choosing an Android Version .. 14�

Summary .. 14�

■Chapter 2: Star Fighter : A 2-D Shooter ... 15�

Telling the Star Fighter Story .. 15�

What Makes a Game? ... 18�

Understanding the Game Engine ... 18�

Understanding Game-Specific Code .. 20�

Exploring the Star Fighter Engine .. 23�

Creating the Star Fighter Project .. 24�

Summary .. 26�

■Chapter 3: Press Start: Making a Menu .. 27�

Building the Splash Screen ... 27�

Creating an Activity .. 28�

Creating Your Splash Screen Image .. 35�

Working with the R.java File .. 37�

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

■ CONTENTS

vi

Creating a Layout File .. 38�

Creating Fade Effects ... 45�

Threading Your Game .. 48�

Creating the Main Menu .. 54�

Adding the Button Images ... 54�

Setting the Layouts .. 56�

Wiring the Buttons ... 58�

Adding onClickListeners .. 60�

Adding Music .. 61�

Creating a Music Service ... 64�

Playing Your Music .. 69�

Summary .. 72�

■Chapter 4: Drawing The Environment .. 73�

Rendering the Background ... 74�

Creating the Creating the Creating the .. 75�

Creating a Renderer ... 79�

Loading an Image Using OpenGL ... 85�

Scrolling the Background .. 97�

Adding a Second Layer ... 104�

Loading a Second Texture ... 106�

Scrolling Layer Two ... 107�

Working with the Matrices ... 109�

Finishing the scrollBackground2() Method .. 111�

Running at 60 Frames per Second ... 113�

Pausing the Game Loop ... 114�

Clearing the OpenGL Buffers .. 116�

Modify the Main Menu .. 117�

Summary .. 118�

■Chapter 5: Creating Your Character .. 119�

Animating Sprites ... 119�

Loading Your Character .. 122�

Creating Texture Mapping Arrays .. 123�

Loading a Texture onto Your Character ... 127�

Setting Up the Game Loop ... 131�

Moving the Character .. 132�

Drawing the Default State of the Character ... 133�

Coding the PLAYER_RELEASE Action ... 136�

Moving the Character to the Left ... 138�

Loading the Correct Sprite ... 140�

Loading the Second Frame of Animation ... 143�

Moving the Character to the Right ... 146�

Loading the Right-Banking Animation ... 148�

Moving Your Character Using a Touch Event .. 151�

Parsing MotionEvent .. 152�

Trapping ACTION_UP and ACTION_DOWN ... 154�

Adjusting the FPS Delay .. 156�

Summary .. 157�

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

■ CONTENTS

vii

■Chapter 6: Adding the Enemies ... 159�

Midgame Housekeeping ... 159�

Creating a Texture Class ... 160�

Creating the Enemy Class ... 164�

Adding a New Sprite Sheet .. 165�

Creating the SFEnemy Class .. 166�

The Bezier Curve .. 170�

Summary .. 175�

■Chapter 7: Adding Basic Enemy Artificial Intelligence 177�

Getting the Enemies Ready for AI ... 177�

Creating Each Enemy’s Logic .. 179�

Initializing the Enemies .. 182�

Loading the Sprite Sheet ... 183�

Reviewing the AI ... 184�

Creating the moveEnemy() Method .. 185�

Creating an enemies[] Array Loop ... 185�

Moving Each Enemy Using Its AI Logic .. 186�

Creating the Interceptor AI .. 187�

Adjusting the Vertices .. 188�

Locking on to the Player’s Position .. 189�

Implementing a Slope Formula .. 191�

Creating the Scout AI .. 198�

Setting a Random Point to Move the Scout ... 199�

Moving Along a Bezier Curve ... 201�

Creating the Warship AI .. 203�

Summary .. 205�

■Chapter 8: Defend Yourself! .. 207�

Creating a Weapon Sprite Sheet ... 207�

Creating a Weapon Class ... 209�

Giving Your Weapon a Trajectory .. 211�

Creating a Weapon Array ... 211�

Adding a Second Sprite Sheet ... 212�

Initializing the Weapons ... 213�

Moving the Weapon Shots ... 214�

Detecting the Edge of the Screen .. 215�

Calling the firePlayerWeapons() Method .. 218�

Implementing Collision Detection ... 219�

Applying Collision Damage .. 219�

Creating the detectCollisions() Method .. 220�

Detecting the Specific Collisions ... 221�

Removing Void Shots ... 222�

Expanding on What You Learned .. 224�

Summary .. 224�

Reviewing the Key 2-D Code .. 225�

■Chapter 9: Publishing Your Game .. 243�

Preparing Your Manifest ... 243�

Preparing to Sign, Align, and Release ... 244�

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

■ CONTENTS

viii

Checking the Readiness of AndroidManifest ... 247�

Creating the Keystore .. 249�

Summary .. 252�

Part I: Creating 3D Games .. 253�

■Chapter 10: Blob Hunter: Creating 3-D Games .. 255�

Comparing 2-D and 3-D Games .. 255�

Creating Your 3-D Project ... 256�

BlobhunterActivity.java .. 256�

BHGameView ... 257�

BHGameRenderer .. 258�

BHEngine ... 259�

Creating a 3-D Object Test .. 259�

Creating a Constant ... 260�

Creating the BHWalls Class .. 261�

Instantiating the BHWalls Class ... 263�

Mapping the Image .. 264�

Using gluPerspective() ... 266�

Creating the drawBackground() Method .. 267�

Adding the Finishing Touches .. 269�

Summary .. 270�

■Chapter 11: Creating an Immersive Environment 271�

Using the BHWalls class ... 271�

Creating a Corridor from Multiple BHWalls Instances .. 272�

Using the BHCorridor Class ... 273�

Building the BHCorridor Class .. 274�

Adding a Wall Texture .. 283�

Calling BHCorridor ... 284�

Summary .. 285�

■Chapter 12: Navigating the 3-D Environment .. 287�

Creating the Control Interface ... 287�

Editing BHEngine ... 288�

Editing BlobhunterActivity .. 289�

Moving Through the Corridor .. 291�

Adjusting the View of the Player .. 293�

Summary .. 294
Reviewing the Key 3-D Code .. 295�

Index ... 301

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

ix

Foreword

I dreamed of making video games when I was young, like nearly every other boy my age, but had
no idea where to even begin. Everyone has the capability for a great game idea, but having the
tools to create it is a much different story. The internet was in its infancy and there were precious
few resources on game development, since even those in the industry were still figuring things
out. For me, things changed as I got into my early 20s and found that universities were now
starting to teach game design and development.

Even after finishing my degree, I remember realizing that there was very little opportunity for
me to showcase my skills to potential employers. I was good at programming, but there wasn't
much in the way of game development software that would allow me to focus on creating
gameplay. It really took a team then to create anything more than the most simplistic games.
There was certainly no way for a single developer to make a living working on their own unless
they were skilled in all types of programming, art, and design and could sustain themselves for
years while working on it.

Things started changing rapidly as the social gaming market began to explode and mobile
devices became powerful enough to run truly fun game experiences. Things have continued to
evolve so much that I'm blown away to see that games that I played on a console a decade ago are
now fully functional in the palm of my hand. Along with this came game development software
environments that allowed game developers to easily create games and focus on fun
and functionality, no longer having to worry about just getting the nuts and bolts going.

Now there are so many choices out there for game developers that the decision just becomes
which one to focus your time on? If flexibility is your goal, then Android is the clear winner with
its open environment that encourages the developer and gives options for how and where to
make their content available to consumers. It's also simple to create content that is usable on
both Android tablets and mobile devices, making your chance for profit much higher with the
same work involved.

If you are jumping into Android development as a springboard for other things, the good
news is that Java is a widely used language, so, you will be able to use the knowledge gained in the
future. Plus Java is one of the easier languages to start with as a beginner. I wish I had had such
tools and platforms available when I began my career! Now is a great time to jump in and make
that dream of making games happen.

Jameson Durall
Game Designer

@siawnhy on Twitter
www.jamesondurall.com

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

x

About the Author

J. F. DiMarzio is a seasoned Android developer and author. He began developing games in Basic
on the TRS-80 Color Computer II in 1984. Since then, DiMarzio has worked in the technology
departments of companies such as the U.S. Department of Defense and the Walt Disney
Company. He has been developing on the Android platform since the beta release of version .03,
and he has published two professional applications and one game on the Android Market.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

xi

About the Technical Reviewers

Yosun Chang has been creating apps for iOS and Android since early 2009, and
is currently working on a next generation 3D and augmented reality mobile
games startup called nusoy. Prior to that, since 1999 she did web development
on the LAMP stack and Flash. She has also spoken at several virtual world,
theater, and augmented reality conferences under her artist name of Ina
Centaur. She has a graduate level background in physics and philosophy from
UC San Diego and UC Berkeley. An avid reader who learned much of her
coding chops from technical books like the current volume, she has taken care
to read every single word of the chapters she reviewed — and vet the source.
Contact her @yosunchang on Twitter.

Tony Hillerson is a software architect at EffectiveUI. He graduated from
Ambassador University with a B.A. in Management Information Systems. On
any given day, Tony might be working with Android, Rails, Objective-C, Java,
Flex, or shell scripts. He has been interested in developing for Android since
the early betas. Hillerson has created Android screencasts, has spoken about
Android at conferences, and has served as technical reviewer on Android
books. He also sometimes gets to write Android code. He is interested in all
levels of usability and experience design, from the database to the server to the
glass. In his free time, Hillerson enjoys playing the bass, playing World of
Warcraft, and making electronic music. Tony lives outside Denver, Colorado,

with his wife and two sons.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

xii

About the Game Graphics
Designer

Ben Eagle has been working with computer graphics and web development for 14 years, which
he learned while serving in the Marine Corps. While working with various companies, Ben has
designed hundreds of sites, company signs, logos, commercials, and marketing graphics.
Currently he works as a senior programmer, living in Davenport Florida. At the age of 34 he
continues to pursue his career and teaches graphics to students on the side. He has acquired two
associate’s degrees in digital media and web development. Ben also has his MCP and C++/Java
certification. In his leisure he continues his passion in computer arts and programming and
performs in a band.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

xiii

Acknowledgments

I would like to thank everyone who made this book possible: my agent Neil Salkind and everyone
at Studio B; Steve Anglin, Corbin Collins, James Markham, Yosun Chang, Tony Hillerson, and the
gang at Apress books; Ben Eagle for the in-game graphics; MD, JS, CL, DL, MB, JK, CH, BB, DB,
and KK at DWSS; and everyone else who helped me along the way who I may have forgotten.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

xiv

Preface

Welcome to Practical Android 4 Games Development. This book takes you step by step through
the evolution of two different mobile games; from concept through code. You will learn how to
conceive a game from a root idea and carry through to the complex task of coding an engine to
turn your idea into a playable game.

I decided to write this book to teach the skills needed to create your own 2D and 3D games
for the Android 4 platform. Android 4 unites the operating systems of Android-based mobile
phones and tablets under one common SDK. This means that the games you develop can be
played on the latest tablets and phones, and on the best possible hardware. The same game is
now playable on either kind of device; you just need to take the first step and create a compelling
game.

When the first Android SDK with full OpenGL ES 2D and 3D support was released, I
immediately found myself looking for ways to create games that were compelling and fun to play.
That’s when I realized that the skills needed to create these games, though not hard to master,
were definitely not easy to discover on one’s own. In fact, unless you had previous experience in
OpenGL and specifically OpenGL ES, it was very hard to just dive right in to casual Android game
development.

I decided to take what I had learned in developing casual games on Android and break that
knowledge into a core set of basic skills that could be easily mastered and expanded on as you
progress in your game development. These basic skills might not see you creating the next Red
Faction: Armageddon right after you complete this book, but they will give you the knowledge
necessary to understand how such games are made and possibly create them with the right
dedication and practice.

No doubt you have your first Android game already mapped out in your head. You know
exactly the way you want it to look, and exactly the way you want it to play. What you don’t know
is how to get that idea out of your head and on to your phone or tablet. While it is great to have an
idea for a game, it is getting that game from the idea stage to the “playable on a mobile device”
stage that is the tricky part.

My advice to you as you read through this book is to keep your ideas simple. Do not try to
overcomplicate a good game just to because you can. What I mean by that is, some of the most
“addictive” games are not necessarily the most complex. They tend to be the games that are easy
to pick up and play but hard to put down. Keep this in mind as you begin to conceptualize the
kind of games you want to make. In this book you will make a simple engine that will power a
scrolling shooter. The scrolling shooter is a simple game type that can encompass very difficult
and challenging games. It has long been considered one of the more addicting arcade style games
because it offers fast action and a nearly unlimited amount of game play. It is very easy to go back
to a scrolling shooter time and time again and have a rewording gaming experience. This is why I
chose this style of game to start you off. In the end, if you try to make games that you would like to
play as a gamer, then your experience will be rewarding. I hope you enjoy your journey into the
wonderful world of Android game development.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

 Part

Planning and Creating
2D Games
The first part of this book, Chapter 1-9, will take you through the processes of planning
and creating a playable 2D Android game – Star Fighter. The creation of this game will
follow a distinct and logical path. First you will plan and write the story behind your game.
Next, you will create the background for the game. Then you will create the playable and
non-playable characters. Finally you will create the weapons systems and collision
detection. Before following the steps needed to deploy your game to a mobile device in
Chapter 9, at the end of Chapter 8, I provide the complete code listings of the most
important 2D files that you either created or modified in Part 1. Use these listings to
compare your code and ensure that each game runs properly. This will prepare you for the
3D development phase that follows in Part 2: “Creating 3D Games” (Chapters 10-12).

I

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

 3

 Chapter

Welcome to Android
Gaming
I began developing on Android in early 2008 on the beta platform. At the time, no
phones were announced for the new operating system and we developers genuinely felt
as though we were at the beginning of something exciting. Android captured all of the
energy and excitement of the early days of open source development. Developing for
the platform was very reminiscent of sitting around an empty student lounge at 2:00 a.m.
with a Jolt cola waiting for VAX time to run our latest code. It was an exciting platform to
see materialize, and I am glad I was there to see it.

As Android began to grow and Google released more updates to solidify the final
architecture, one thing became apparent: Android, being based on Java and including
many well known Java packages, would be an easy transition for the casual game
developer. Most of the knowledge that a Java developer already had could be recycled
on this new platform. The very large base of Java game developers could use that
knowledge to move fairly smoothly onto the Android platform.

So how does a Java developer begin developing games on Android and what tools are
required? This chapter aims to answer these questions and more. Here, you will learn
how to block out your game’s story into chunks that can be fully realized as parts of
your game. We’ll explore some of the essential tools required to carry out the tasks in
future chapters

This chapter is very important, because it gives you something that not many other
gaming books have—a true focus on the genesis of a game. While knowing how to write
the code that will bring a game to life is very important, great code will not help if you do
not have a game to bring to life. Knowing how to get the idea for your game out of your
head in a clean and clear way will make the difference between a good game and a
game that the player can’t put down.

1

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 4

Programming Android Games
Developing games on Android has its pros and cons, which you should be aware of
before you begin. First, Android games are developed in Java, but Android is not a
complete Java implementation. Many of the packages that you may have used for
OpenGL and other graphic embellishments are included in the Android software
development kit (SDK). “Many” does not mean “all” though, and some very helpful
packages for game developers, especially 3-D game developers, are not included. Not
every package that you may have relied on to build your previous games will be
available to you in Android.

With each release of new Android SDK, more and more packages become available,
and older ones may be deprecated. You will need to be aware of just which packages
you have to work with, and we’ll cover these are we progress through the chapters.

Another pro is Android’s familiarity, and a con is its lack of power. What Android may
offer in familiarity and ease of programming, it lacks in speed and power. Most video
games, like those written for PCs or consoles, are developed in low-level languages
such as C and even assembly languages. This gives the developers the most control
over how the code is executed by the processor and the environment in which the code
is run. Processors run very low-level code, and the closer you can get to the native
language of the processor, the fewer interpreters you need to jump through to get your
game running. Android, while it does offer some limited ability to code at a low level,
interprets and threads your Java code through its own execution system. This gives the
developer less control over the environment the game is run in.

This book is not going to take you though the low-level approaches to game
development. Why? Because Java, especially as it is presented for general Android
development, is widely known, easy to use, and can create some very fun, rewarding
games.

In essence, if you are already an experienced Java developer, you will find that your
skills are not lost in translation when applied to Android. If you are not already a
seasoned Java developer, do not fear. Java is a great language to start learning on. For
this reason, I have chosen to stick with Android’s native Java development environment
to write our games.

We have discussed a couple of pros and cons to developing games on Android.
However, one of the biggest pros to independent and casual game developers to create
and publish games on the Android platform is the freedom that you are granted in
releasing your games. While some online application stores have very stringent rules for
what can be sold in them and for how much, the Android Market does not. Anyone is
free to list and sell just about anything they want. This allows for a much greater amount
of creative freedom for developers.

In Chapter 2, you’ll create your first Android-based game, albeit a very simple one. First,
however, it’s important look behind the scenes to see what inspires any worthwhile
game, the story.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 5

Starting with a Good Story
Every game, from the simplest arcade game to the most complex role-playing game
(RPG), starts with a story. The story does not have to be anything more than a sentence,
like this: Imagine if we had a giant spaceship that shot things.

However, the story can be as long as a book and describe every land, person, and
animal in the environment of a game. It could even describe every weapon, challenge,
and achievement.

NOTE: The story outlines the action, purpose, and flow of a game. The more detail that you can

put into it, the easier your job developing the code will be.

Take a look at the game in Figure 1–1, what does it tell you? This is a screen shot from
Star Fighter; the game that you will be developing through the beginning chapters of this
book. There is a story behind this game as well.

Figure 1–1. Star Fighter screen shot

Most of us never get to read the stories that helped create some of our favorite games,
because the stories are really only important to the people who are creating the game.
And assuming the developers and creators do their jobs well, the gamer will absorb the
story playing the game.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 6

In small, independent development shops, the stories might never be read by anyone
other than the lead developer. In larger game-development companies, the story could
be passed around and worked on by a number of designers, writers, and engineers
before it ends up in the hands of the lead developers.

Everyone has a different way to write and handle the creation of the story for the games
that they want to make. There is no right or wrong way to handle a game’s story other
than to say that it needs to exist before you begin to write any code. The next section
will explain why the story is so important.

Why Story Matters
Admittedly, in the early days of video gaming, stories may not have been looked upon as
importantly as they are now. It was much easier to market a game that offered quick
enjoyment without needing to get very deep into its purpose.

This is definitely not the case anymore. People, whether they are playing Angry Birds or
World of Warcraft, expect a defined purpose to the action. This expectation may even
be on a subconscious level, but your game needs to hook the players so that they want
to keep playing. This hook is the driving purpose of the story.

The story behind your game is important for a few different reasons. Let’s take a look at
exactly why you should spend the time to develop your story before you begin to write
any code for your game.

The first reason why the story behind your game is important is because it gives you a
chance to fully realize your game, from beginning to end, before you begin coding. No
matter what you do for a living, whether you are a full-time game developer or are just
doing this as a hobby, your time is worth something.

In the case of a full-time game developer, there will be an absolute dollar value assigned
to each hour you spend coding and create a game. If you are creating independent
games in your spare time, your time can be measured in the things you could be doing
otherwise: fishing, spending time with others, and so on. No matter how you look at it,
your time has a definite and concrete worth, and the more time you spend coding your
game, the more it costs.

If your game is not fully realized before you begin working on your code, you will
inevitably run into problems that can force you to go back to tweak or completely rewrite
code that was already finished. This will cost you in time, money, or sanity.

NOTE: To be fully realized an idea must be complete. Every aspect of the idea has been though

out and carefully considered.

As a game developer, the last thing that you want is to be forced to go back and change
code that is finished and possibly even tested. Ideally, your code should be extensible
enough that you can manipulate it without much effort—especially if you want to add
levels or bosses onto your game later. However, you may have to recode something

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 7

relatively minor, like the name of a character or environment, or you might have to
change something more drastic. For example, maybe you realized you never gave your
main character the weapon needed to finish the game because you didn’t know how it
was going to end when you started building it.

Having a fully developed story arc for your game will give you a linear map to follow
when writing your code. Mapping out your game and its details like this will save you
from many of the problems that could cause you to recode already-finished parts of
your game. This leads us to the next reason why you should have a story before you
begin coding.

The story that your game is based on will also serve as reference material as you write
your code. Whether you need to look back on the correct spelling of the name of a
character name or group of villains or to refresh your memory as to the layout of a city
street, you should be able to pull your information from your.

Being able to refer to the story for details is especially key if multiple people are going to
be working on the game together. There may be sections of the story that you did not
write. If you are coding something that refers to one of those sections, the fully realized
story document is an invaluable piece of reference material for you.

Having a story developed to this scale and magnitude means that multiple people can
refer to the same source and they will all get the same picture of what needs to be done.
If you have multiple people working together in a collaborative environment, it is critical
that every person be moving in the same direction. If everyone starts coding what they
think the game should be, each person will code something different. A well-written
story, one that can be referred to by every developer working on the game, will help
keep the team moving toward the same goal.

But how do you get the story out of your head and prepare it to be referenced by either
yourself or others? This question will be answered in the following section.

Writing Your Story
There is no trick to writing out your story. You can be as elaborate or rudimentary as you
feel is necessary. Anything from a few quick sentences on the scratch pad near your PC
to a few pages in a well-formatted Microsoft Word document will suffice. The point is
not to try to publish the story as a book; rather, you just need to get the story out of your
head and into a legible format that can be referenced and hopefully not changed.

The longer the story stays in your head, the more time you will have to change the
details. When you change any details at all in the story, you risk having to rewrite code
(and we have already discussed the dangers of this). Therefore, even if you are a one-
person, casual-development machine, and you think that it is not necessary to write
down a story just for you, think again. Writing down the story ensures that you will not
forget or accidentally change any of the details.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 8

No doubt you have a game in mind that you want to develop as soon as you learn the
skills in this book. However, you may not have ever really considered what the story for
that game would be. Give some thought to that story.

TIP: Take some time now to write down a quick draft of your game, if you have one in mind.

When you finish, compare it to the mock story that follows.

Let’s look at a quick example of a story that can be used to develop a game.

John Black steals a somewhat-fast but strong car from a local impound.
The bad guys catch up to him quickly. Now, he has to make it out of
Villiansburg with the money, avoid the police, and fight off the gang he
stole the money from. The gang’s cars are faster, but luckily for John,
he can shoot and drive at the same time. Hopefully, the lights are still on
at the safe house.

In that quick story, even though there are few details, you still have enough for one
casual developer to start working on fairly simple game. What can you get out of this
paragraph?

The first concept that comes to mind from this short story would be a top-down, arcade-
style driving game; think original Spy Hunter. The driver, or the car, could have a gun to
fire at enemy vehicles. The game could end when the player reaches the edge of the
town, or possibly a safe house or garage of some sort.

This short story even has enough details to make the game a bit more enjoyable to play.
The main character has a name, John Black. There are two sets of enemies to avoid: the
police and the gang. The environment is made up of the streets of Villiansburg, and the
majority of the enemy vehicles travel faster than the main character’s. There is definitely
enough good material here to make a quick, casual game.

Already the metaphoric wheels in your brain should be turning out ideas for this game. A
fair amount of good, arcade-style action is described in this one short paragraph. If you
can describe the game that you want to make in a short paragraph like this, than as a
single, casual developer, you are well on your way to making a fairly enjoyable game.

Where one short paragraph might have enough detail for a fairly convincing casual
game, imagine what a longer story could provide. The more detail that you can put into
your story now, the easier your job will be as you are coding, and the better your game
will be.

Take some extra time with your story to get the details just right. Sure a short paragraph,
like the one in this section, is enough to go on, but more details could definitely help you
as you are coding. Here is a list of questions that you should already be asking yourself
after reading this story:

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 9

� What kind of car does John steal and drive?

� Why did he steal the money?

� What kind of weapon does he have?

� What kind of weapons, if any, are on the car?

� Is Villiansburg a city or country environment?

� Is there a boss battle at the end?

� How is scoring accumulated, if at all?

If we go back and answer some of these questions, the story may look like this.

John Black, framed for a crime he didn’t commit, seizes an opportunity
to get back at the gang that set him up. He intercepts $8 million that
was on its way to Big Boss, the leader of the Bad Boys. He knows he
can’t get away on foot, so he steals a somewhat-fast but strong black
sedan from a local impound.
This car has everything: twin mounted machine guns, oil slick, and mini
missiles.
The bad guys catch up to him quickly. Now, he has to make it out of the
crowded city streets of Villiansburg with the money. Dilapidated and
boarded up buildings line the streets. The faster John can drive, the
better his chances are of making it out alive. All he has to do is avoid
the police and fight off the gang he stole the money from.
The gang’s cars might be faster, but luckily for John, he can shoot and
drive at the same time. He will need these skills when Big Boss catches
up to him at the edge of town in his re-commissioned U.S. Army tank.
If John can defeat Big Boss, he will keep the money, but if he gets hit
along the way, Big Boss’s henchmen will take what they can get away
with until John has nothing. John better be careful, because Big Boss’s
henchmen will be coming at him with everything they have: sports cars,
motorcycles, machine guns, and even helicopters.
Hopefully, the lights are still on at the safe house.

Now, let’s take a look at the story again. We have a lot more to go on now, and clearly,
the more detailed story would make for more interesting game play. Anyone coding this
game would now be able to discern the following game play details.

� The main character’s car is a black sedan.

� The car has two machine guns, missiles, and oil slicks as weapons.

� The environment is a crowded city street lined with rundown, boarded
up buildings.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 10

� The player will start with $8,000,000 (8,000,000 points).

� The player will lose money (points) if an enemy catches or hits him.

� The enemy vehicles will be sports cars, motorcycles, and helicopters.

� At the end of the city is a boss battle against a tank.

� The game ends when the play is out of money (points).

As you can see, the picture of what needs to be done is much clearer. There would be
no confusion over this game play. This is why it is important to put as much detail as
possible into the story that your game will be based on. You will definitely benefit from
all of the time you put in before you begin coding.

Now that we’ve addressed some of the reasons why you might want to develop games
on the Android platform and reviewed the philosophy behind making your game matter,
let’s look at the approach I’ll be taking and what tools you will need to be a successful
Android game developer. These will serve as the basis for all projects in the remaining
chapters.

The Road You’ll Travel
In this book, you will learn both 2-D and 3-D development. If you start from the beginning
of this book and work through the basic examples, building the sample 2-D game as you
go, the chapters on 3D graphics should be easier to pick up. Conversely, if you try to jump
straight to the chapters on 3-D development, and you are not a seasoned OpenGL
developer, you may have a harder time understanding what is going on.

As with any lesson, class, or path of learning, you will be best served by following this
book from the beginning to the end. However, if you find that some of the earlier
examples are too basic for your experience level, feel free to move between chapters.

Gathering Your Android Development Tools
At this point, you are probably eager to dive right into developing your Android game. So
what tools do you need to begin your journey?

First, you will need a good, full-featured integrated development environment (IDE). I
write all of my Android code in Eclipse Indigo (which is a free download). All of the
examples from this book will be presented using Eclipse. While you can use almost any
Java IDE or text editor to write Android code, I prefer Eclipse because of the well-crafted
plug-ins, which tightly integrate many of the more tedious manual operations of
compiling and debugging Android code.

If you do not already have Eclipse and want to give it a try, it is a free download from the
Eclipse.org site (http://eclipse.org), shown in Figure 1–2:

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 11

Figure 1–2. Eclipse.org

This book will not dive into the download or setup of Eclipse. There are many resources,
including those on Eclipse’s own site and the Android Developer’s Forum, that can help
you set up your environment should you require assistance.

TIP: If you have never installed Eclipse, or a similar IDE, follow the installation directions
carefully. The last thing you want is an incorrectly installed IDE impeding your ability to write

great games.

You will also need the latest Android SDK. As with all of the Android SDKs, the latest can
be found at the Android developer site (http://developer.android.com/sdk/index.html),
as shown in Figure 1–3:

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 12

Figure 1–3. The Android developer site

As with the IDE, many resources are available to help you download and install the SDK
(and the corresponding Java components that you may need) if you need help doing so.

Finally, you should possess at least a basic understanding of development, specifically
in Java. While I do my best to explain many of the concepts and practices used in
creating the code for this book, I will not be able to explain the more basic development
concepts. In short, my explanations alone should be enough to get you through the
code in this book if you are a novice, but a more advanced Java developer will be able
to easily take my examples and expand on them.

Installing OpenGL ES
Arguably one of the most important items you’ll be using is OpenGL ES, a graphics
library that was developed by Silicon Graphics in 1992 for use in computer-aided design
(CAD). It has since been managed by the Khronos Group and can be found on most
platforms. It is very powerful and an invaluable tool to anyone who wants to create
games.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 13

NOTE: It does bear mention that the version of OpenGL that is provided with, and supported by,
Android is actually OpenGL ES (OpenGL for Embedded Systems). OpenGL ES is not as fully
featured as standard OpenGL. However, it is still an outstanding tool for developing on Android.

Throughout this book, for ease of discussion, I will refer to the OpenGL ES functions and libraries

as OpenGL; just be warned that we are actually using OpenGL ES

When most people think of OpenGL, the first things that come to mind are 3-D graphics.
It’s true that OpenGL is very good at rendering 3-D graphics and can be used to create
some convincing 3-D games. However OpenGL is also very good at rendering 2-D
graphics. In fact, OpenGL can render and manipulate 2-D graphics much faster than the
native Android calls. The native Android calls are good enough for most application
developers, but for games, which require as much optimization as possible, OpenGL is
the best way to go.

For those of you who may not have the most OpenGL experience, fear not. In the
chapters that deal with heavy OpenGL graphics rendering, I will do my best to fully
explain every call you need to make. Therefore, if the following OpenGL code looks like
a foreign language to you, don’t worry; it will make sense by the end of this book:

gl.glViewport(0, 0, width, height);
gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
GLU.gluOrtho2D(gl, 0.0f, 0.0f, (float)width,(float)height);

OpenGL is a perfect tool for you to use and learn in this book, because it is a cross-
platform development library. That is, you can use OpenGL and the OpenGL knowledge
that you learn here across many environments and disciplines. From the iPad and
iPhone to Microsoft Windows and Linux, many of the same OpenGL calls can be used
across all of these systems.

Using OpenGL for your 2-D game graphics throughout this book has an added benefit.

OpenGL, for all intents and purposes, does not care if you are working with 2-D or 3-D
graphics. Many of the same calls are used for both. The only difference is in how
OpenGL will render the polygons when it comes time to draw to the screen. This being
said, your transition from 2-D to 3-D graphics will be a lot smoother and a lot easier
using OpenGL. Keep in mind that this book is not intended to be a complete desk
reference on OpenGL ES, nor is it going to show you complex matrix math and other
optimization tricks that you would otherwise be using in a profession game house. The
truth is, as a casual game developer, the OpenGL methods provided for things like
matrix math, while they come with some overhead, are good enough for learning the
lessons this book.

In this book, you are going to use OpenGL ES 1.0. There are three versions of OpenGL
available to Android users: OpenGL ES 1.0, 1.1, and 2.0. Why use version 1.0? First,
there is already a lot of reference material available on the Internet about OpenGL ES
1.0. Therefore if you get stuck, or want to expand your knowledge, you will have a lot of
places to turn for help. Second, it is tried and tested. Being the oldest of the OpenGL ES

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 1: Welcome to Android Gaming 14

platforms, it will be available to the most devices and will have been extensively tested.
Finally, it is just plain easy to pick up and learn. Also, picking up 1.1 and maybe even 2.0
after you already know 1.0 will be a lot easier.

Choosing an Android Version
One of the appeals of developing for Android is that it is so widely used across many
different devices, such as mobile phones, tablets, and MP3 players. The games that you
develop have a chance to run one dozens of different cell phones, tables, and even e-
readers. From different wireless carriers to different manufacturers, the hardware
exposure that your game could get is quite varied.

Unfortunately, this ubiquity can also be a tough hurdle for you to jump through. At any
given time, there could be up to 12 different versions of Android running on dozens of
different pieces of hardware. The latest tablets and phones will be running version 2.3.3,
3.0, 3.1, or 4.0—the most recent versions, which are run on the most powerful devices.
Therefore, these will be the versions that we are going to target in this book.

NOTE: If you do not have an Android device to test on you can use the PC emulator. However, I

highly recommend that you try to use an actual Android phone or tablet to test your code. In my
testing, I have noticed some minor discrepancies when running my code in an emulator versus

running it on my phone or tablet.

Most importantly, have fun as you work through the process of creating games. Games,
after all, are fun, and you should have fun making them!

Summary
In this chapter, we discussed what you should expect to get out of this book. You
learned the importance of story to the creation of a game and how sticking to that story
can help you create better code. You also learned about the process of creating games
on the Android platform, the versions of Android, and Android’s development
environment. Finally, you discovered the key to creating games on the Android platform,
OpenGL ES, and we covered a few pertinent details about Android version releases.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

15

 Chapter

Star Fighter :
A 2-D Shooter
The game you will be creating as you work your way through this book is Star Fighter.
Star Fighter is a 2-D, top-down, scrolling shooter. Even though the action is fairly limited,
the story is surprisingly detailed. In this chapter, you’ll get a sneak preview of the game
and the story behind it. You will also learn about the different parts of the game engine
and what the game engine does.

Telling the Star Fighter Story
The story for Star Fighter is as follows; we will be referring to it periodically as we
progress through this book:

Captain John Starke is a grizzled galactic war veteran. He fought his way out of every
battle the Planetary Coalition has been involved in. Now, on his way back to earth and
ready to retire from years of service to a quiet little farm in western Massachusetts, he
finds himself caught in the middle of a surprise enemy invasion force.

Captain Starke prepares for battle. But this is no ordinary Kordark invasion fleet;
something is different.

Starke cranks up the thrusters on his AF-718 and sets his guns to automatically fire.
Luckily, the AF-718 is light and nimble. As long as he can avoid enemy guns and the
occasional collision, the autofire cannons should make short work of the smaller Kordark
fighters.

Unfortunately, what the AF-718 has in agility and autofire capabilities, it lacks in shields.
Captain Starke is best served by avoiding the enemy craft altogether. If he does sustain
any damage, after three strikes, he is out. The AF-718 can’t take very many direct blaster
hits without good shields. As for a direct collision from an enemy, unfortunately, it is “one
and done” for Captain Starke.

2

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 16

While Captain Starke is navigating his way through wave after wave of enemy ships, he
may be lucky enough to come across some debris of other destroyed AF-718s—
casualties of the last group to be surprised by the invasion force. As long as he is not
destroyed along the way, Captain Starke may find a use for these parts.

The AF-718 has a very helpful feature that will aid Captain Starke in his fight. The latest
versions of the AF-718, specially made for the last Centelum Prime Rebellion, are
equipped with a self-repair mode. If Captain Starke gets into trouble and he is losing his
shields, or finds that he needs even more firepower, all he needs to do is navigate his
ship up to some of the AF-718 parts that are drifting around the battle space. He should
be able to obtain anything from stronger shields, which could double or triple the amount
of damage that his ship can take, to more powerful guns that are faster and require fewer
hits to destroy the enemy.

Captain Starke and his AF-718 are not the only ones with tricks up their sleeves. The
Kordark invasion fleet is made up of three different ships:

� Kordark Scout

� Kordark Interceptor

� Larash War Ship

Kordark Scouts are the most numerous of all of the ships in the invasion fleet. They are
fast—just as fast as Captain Starke’s AF-718. The Scout flies in a swift but predictable
pattern. This should make them easy to recognize and even easier to anticipate. Good
thing for Starke, in diverting all of the Scout’s power to their thrust engines, the Kordarks
gave them very weak shields. One good blast from the AF-718 should be all that is
needed to take down a Kordark Scout. They do have a single blast cannon mounted on
the front of the ship that fires slow, single-round bursts. Some rapid fire and quick
navigation should get the AF-718 out of harm’s way and give Captain Starke the leverage
he needs to destroy a Scout.

Kordark Interceptors, on the other hand, are very direct and deliberate enemies. They will
fly slowly but directly at Captain Starke’s AF-718. An Interceptor is unmanned and is
used as a computer-guided battering ram. They are programmed to take out all enemies
as soon as they can lock on to an enemy’s position.

The Interceptor was built to penetrate the strong hulls of the massive Planetary
Coalition’s battle cruisers. Therefore their shields are very strong. It would easily take four
direct hits from the AF-718 best weapon to stop this craft. Captain Starke’s best offense,
in this case, is a good defense. The Kordark Interceptor locks on to its target very early,
and it is programmed not to break its path once it has locked on. If Captain Starke is in a
clear area, he should have no problem moving out of the way before the quick
Interceptor makes contact. If he is lucky, he might destroy one or two with his cannons,
but that would take some definite skill.

The final type on enemy that Captain Starke will face is the Larash War Ship.

The presence of the Larash War Ships is what makes this invasion fleet unlike any other
Captain Starke as ever seen. The Larash War Ships are as strong as the Kordark

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 17

Interceptors, but they also have forward facing guns, like the Scouts. They can maneuver
in a random pattern and should give Captain Starke his greatest challenge. Luckily for
him, there are relatively few of these War Ships, giving him time to recoup between
appearances.

The computer of the AF-718 will track how many ships are in the invasion force. It will
notify Captain Starke when he has eliminated all of the potential enemies. These
statistics will be sent to the forward command on Earth to let them know how he is
ranking against the invasion.

Help Captain Starke eliminate as many invasion force waves as possible and reach Earth
alive.

So there it is, the story that you will be referring to as you code Star Fighter. What game
details can you get out of this story? Let’s list them, in the same way we did for the
sample story in Chapter 1:

� The main character Captain John Starke will be piloting an AF-718 spaceship.

� The player will not have to operating any firing mechanism, because the ship
has an autofire feature.

� The player can power up by obtaining more shields and guns.

� If the player sustains three hits from an enemy cannon without repair, the game
will end.

� If the play sustains a direct hit from an enemy craft, the game will end.

� There are three different types of enemy ships:

� Scouts move quickly in a predictable pattern and fire a single cannon.

� Interceptors have no cannons but can take four direct blaster hits from the
player. They cannot change their course once they have locked on to the
player’s position

� The War Ships have cannons and can take four direct blaster hits. They
move in a random pattern

� The game will track the number of enemies in each wave. Every time the player
destroys one, the counter will be decreased by one until the wave is finished.

� The scores will be uploaded to a central area.

This sounds like it is going to be a very fun, exciting, and detailed game to play. The
best part is that the code needed to create this game will not be that complicated, or at
least not as complicated as you might expect.

In the next section, you will learn about the game engine for Star Fighter. You will learn
what the different parts of the game engine are, and what the engine as a whole does for
your game. Finally, you will begin to stub out some basic engine functionality and begin
to build your game.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 18

What Makes a Game?
Now that you know what Star Fighter is going to be about, we can begin to look at the
different pieces necessary to build the game. Many pieces will all have to fit together in a
very tight and cohesive way to create the end product that is a playable, enjoyable
Android game.

When you think about everything a game has to do to deliver a truly enjoyable
experience, you will begin to appreciate the time and effort it takes to create even the
simplest of games. A typical game will do the following:

� Draw a background.

� Move the background as needed.

� Draw any number of characters.

� Draw weapons, bullets, and similar items.

� Move the characters independently.

� Play sound effects and background music.

� Interpret the commands of an input device.

� Track the characters and the background to make sure none move
where they should not be able to move.

� Draw any predefined animation.

� Make sure that when things move (like a ball bouncing), they do so in a
believable way.

� Track the player’s score.

� Track and manage networked or multiple players.

� Build a menu system for the player to select to play or quit the game.

This may not be a comprehensive list, but it is a fairly good list of all of the things that
most games do. How does a game accomplish all of the things in this list?

For the purposes of this book, we can divide all of the code in a game into two
categories: the game engine and the game-specific code. Everything in the previous list
is handled in one or both of these categories of code. Knowing which is handled where
is critical to understanding the skills in this book. Let’s begin examining these two
categories of code with a look at the game engine.

Understanding the Game Engine
At the core of every video game is the game engine. Just as the name suggests, the
game engine is the code that powers the game. Every game, regardless of its type—

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 19

RPG, first-person shooter (FPS), platformer, or even real-time strategy (RTS)—requires
an engine to run.

NOTE: The engine of any game is purposely built to be generic, allowing it to be used in multiple

situations and possibly for multiple different games. This is in direct opposition to the game-
specific code, which, as the name suggests, is code that is specific to one game and only one

game.

One very popular game engine is the Unreal engine. The Unreal engine, first developed
around 1998 by Epic for its FPS called Unreal, has been used in hundreds of games.
The Unreal engine is easily adaptable and works with a variety of game types, not just
first-person shooters. This generic structure and flexibility make the Unreal engine
popular with not only professions but casual developers as well.

In general terms, the game engine handles all of the grunt work of the game code. This
can mean anything from playing the sound to rendering the graphics onto the screen.
Here is a short list of the functions that a typical game engine will perform.

� Graphics rendering

� Animation

� Sound

� Collision detection

� Artificial intelligence (AI)

� Physics (noncollision)

� Threading and memory management

� Networking

� Command interpreter (I/O)

Why do you need a game engine to do all of this work? The short answer is that for a
game run efficiently, it cannot rely on the OS of the host system to do this kind of heavy-
duty work. Yes, most operating systems have built-in features to take care of every item
on this list. However, those rendering, sound, and memory management systems of an
OS are built to run the operating system and adapt to any number of unpredictable
uses, without specializing in any one. This is great if you are writing business
applications but not so great if you are writing games. Games require something with a
little more power.

For a game to run smoothly and quickly, the code will need to bypass the overhead that
the standard OS systems create and run directly against the hardware required for the
specific process. That is, a game should communicate directly with the graphics
hardware to perform graphics function, communicate directly with the sound card to
play effects, and so on. If you were to use the standard memory, graphics, and sound
systems that are available to you through most OSs, your game could be threaded with

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 20

all of the other OS functions and applications that are running on the system. Your
internal messages could also be queued up with every other system message. This
would make for a choppy looking game that would run very slowly.

For this reason, game engines are almost always coded in low-level languages. As we
touched on earlier, low-level languages offer a more direct path to the hardware of the
system. A game engine needs to be able to take code and commands from the game-
specific code and pass them directly to the hardware. This allows the game to run
quickly and with all of the control that it needs to be able to provide a rewarding
experience.

Figure 2–1 shows a simplified version of the relationship among the game engine, the
device hardware, and the game-specific code.

Figure 2–1. The relationship among the game engine, the game-specific code, and the device hardware

A game engine will not do anything specifically for the game. That is to say, a game
engine will not draw a kitten to the screen. A game engine will draw something to the
screen because it handles graphic rendering, but it will not draw anything specific. It is
the job of the game-specific code to give the engine a kitten to draw, and it is the job of
the engine to draw whatever is passed to it.

Therefore, you will never see the following function in a game engine:

DrawFunnyKitten();

Rather, you would have a function that is more like this:

DrawCharacter(funnyKitten);

Admittedly the final graphic rendering functions that you create in this book will require a
few more parameters than just the name of the image that needs to be rendered, but
you should be able to understand the point that I am making; the engine is very general,
the game-specific code is not.

Now that you have a good overview of what an engine does, let’s contrast that with the
game-specific code, so you will have the full picture of what makes a game.

Understanding Game-Specific Code
Let’s examine the role of the game-specific code. As we discussed earlier, the game-
specific code is the code that is run by one game and only one game, unlike a game
engine, which can be shared and adapted among multiple games.

Device

Hardware

Game Engine
Game

Specific

Code

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 21

NOTE: When creating small, casual games—like the ones in this book—the game engine and
the game-specific code may be so tightly coupled to its engine that it may be hard to tell the two

apart at times. It is still very important to understand the conceptual difference between the two.

The game-specific code is composed of all of the code that makes the characters in your
game (the A-718, the Scout, and the Interceptor, etc.), whereas the game engine just
draws a character. The game-specific code knows the main character fired a cannon shot
and not a missile, whereas the game engine draws an item. The game-specific code is the
code that will destroy the main character if he hits a Scout, but not if he hits a power-up;
the game engine will just test for the collision of two onscreen objects.

For example, in simplified stub code, the collision of the A-718 and a Scout might look
like this:

GameCharacter goodGuy;
GameCharacter scout;
GameCharacter arrayOfScouts[] = new GameCharacter[1];
arrayOfScouts[0] = scout;
/**Move characters***/
Move(goodGuy);
Move(arrayOfScouts);
/***Test for collisions***/
If (TestForCollision(goodGuy,arrayOfScouts))
{
 Destroy(goodGuy);
}

Although this is only a simplified version of what a section of the game routine might
look like, it shows that we created the A-718 and Scout, moved them on the screen, and
tested to see if they collided. If the characters did collide, goodGuy is destroyed.

In this example, goodGuy, arrayOfScouts, and the Destroy() function are all game-
specific code. The Move() and TestForCollision() functions are parts of the game
engine. From this short sample, it is easy to see that you could interchange goodGuy and
arrayOfScouts for any characters in almost any other game, and the Move() and
TestForCollision() functions would still work. This illustrates that the goodGuy and
arrayOfScout objects are game specific and not part of the engine, and the engine
functions Move() and TestForCollision() work for any game.

On a larger project, like a game that tens or hundreds of people are working on, the
engine will be developed first and then the game-specific code will be created to work
with that engine. In the case of small casual games like those in this book, the game
engine and game-specific code can be developed simultaneously. This is going to give
you the unique chance to see the relationship between the two blocks of code as you
are creating them.

You will learn as you progress through this book that some of the functions of the game
engine for small games can almost be indistinguishable from game-specific code. In
small games, you may not be overly worried about the line between engine and game-
specific code as long as the game works the way you want. However, I urge you to keep

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 22

the line between the two as clear as possible to help promote the reusability of your own
code and to help keep your development skills sharp. In other words, try to avoid lazy
code and lazy coding practices.

In Chapter 1, you were presented with a list of items that compose almost any game.
Let’s take a look at the list again and determine which of those items are handled in the
game engine and which in the game-specific code; see Table 2–1.

Table 2–1. The Elements of a Game

Game Element Engine Element Game-Specific Code

Draw a background. Graphics rendering Create a star field.

Move a background. Graphics rendering Scroll the background from top
to bottom.

Draw characters. Graphics rendering Put the A-718 on the screen.

Draw weapons, bullets, etc. Graphics rendering Draw A-718 debris and cannon
blasts.

Move the characters
independently.

Graphics rendering and AI Move an Interceptor toward the
A-718. Move a Scout in a slow
predictable pattern.

Play sound effects and
background music.

Sound Create an explosion when an
enemy is hit. Play background
music.

Interpret input device
commands.

Command interpreter

Track the characters and
background to make sure no
one moves where they should
not be able to move.

Collision detection If the A-718 runs into a Scout, it
will explode. But if two Scouts
clip each other, that is OK.

Draw any predefined
animation.

Animation When the player wins, draw a
victory animation.

Make sure that when things
move (like a ball bouncing),
they do so in a believable
way.

Physics

Track the player’s score. Graphics rendering and
memory management

For each enemy that is hit,
subtract one from the total
number of enemies left to
eliminate.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 23

Game Element Engine Element Game-Specific Code

Track and manage networked
or multiple players.

Networking

Build a menu system for the
player to select to play or quit
the game.

Graphics rendering and
command interpreter

Start a new game, quit a game,
or upload a score.

As Table 2–1 shows, even the smallest games contain a lot of pieces. All of the elements
of a game are handled by the game engine in some capacity; some of the elements are
exclusive to the engine. This should give you a much better idea of the importance of
the game engine and the line between the engine and the game-specific code.

Now that you know what game engines do in general, what will our game engine do for
Star Fighter?

Exploring the Star Fighter Engine
The game engine for Star Fighter is going to be slightly different from the general game
engine you may use. Keep in mind that Android is built on a Linux kernel, and the
development is done using a slightly modified version of Java. This means that Android,
as it is, is actually quick enough to run some casual games with ease. We are going to
take advantage of this in Star Fighter and keep our coding efforts down.

We are not going to build a true, low-level, game engine in this book simply because it is
not necessary for the games that we are building. Let’s face it; the more time you spend
writing your game, the less time you have to enjoy playing it. Android has systems that
we can take advantage of and, while they may not be optimal to running high-end
games, they are easy to learn and well suited for the kind of games we will make.

The game engine for Star Fighter will utilize the Android SDK (and its related Java
packages) to do the following:

� Redner graphics

� Play back sound and effects

� Interpret commands

� Detect collisions

� Handle the enemy AI

After reading the discussion earlier in this chapter, you may notice that some functions
are missing from our game engine, such as noncollision physics, animation, and
networking/social media. This is because the game we are building will not need to
utilize those features, so we don’t need to build them.

To keep this book flowing smoothly and logically, we are going to build the engine and
the game-specific code simultaneously. For example, you will learn to create the

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 24

graphics renderer while you are creating the background and the characters. This will
give you fully functional pieces of engine and game-specific code at the end of every
chapter.

Creating the Star Fighter Project
As an initial task to get you up and running, in this section, you are going to quickly
create the project that will be used for the Star Fighter game. We will use the project
through this entire book.

First, open Eclipse, and click the menu button to open new Android project wizard; see
Figure –2.

Figure 2–2. Starting the new Android project wizard

Once you open the wizard, you will be able to create the project. If you have experience
with creating Android projects, this should be a breeze for you.

TIP: If you are using NetBeans, or any other Java IDE to create your Android applications, this

short tutorial will not help you. There are many resources that you should be able to leverage to

get a project created in those IDEs if you need assistance.

Figure 2–3 illustrates the options that you should select when creating your project. The
project name is planetfighter. Since all of the code for the planetfighter game will be

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 25

created in the same project, it makes sense to name the project planet fighter. This will
also result in all of the code being put into a planetfighter package.

TIP: If you have never created an Android (or Java) project or package before, there are some
naming conventions that you should be made aware of. When naming your package, think of it
as though it is a URL, only written in reverse. Therefore, it should start with the designation, such
as com or net, and end with your entity name. In this case, I am using

com.proandroidgames.

Figure 2–3. The new Android project wizard and its selected options

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 2: Star Fighter: A 2-D Shooter 26

Now, you can select the “Create new project in workspace” option. This will ensure that
you project is created in the standard Eclipse workspace that you should have set for
yourself when you installed Eclipse. The “Use default location” check box is marked by
default. Unless you want to change the location of your workspace for your project, you
should leave it as it is.

Your next step is to select the latest version of the Android SDK, and click the Finish
button. Figure 2–4 illustrates the finished project. We will begin modifying this project in
the next chapter.

Figure 2–4. The project is correctly set up.

Summary
In this chapter, you learned about the story behind Star Fighter. You also explored not
only the different parts to a generic game engine but also those that will be included in
the game engine of Star Fighter. Finally, you created the project that will hold the code
for your game.

In the next five chapters, you will put together the code that will make up the Star Fighter
game. You will begin to build up your skill set as a casual game developer, and you will
learn more about the Android platform.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

27

 Chapter

Press Start: Making a
Menu
In this chapter, you are going to begin developing the Star Fighter 2D arcade shooter.
You will create the first lines of code in your engine and develop the first two screens
that the user will see in your game: the game splash screen and the game menu with
two game options. Throughout this chapter, you’ll learn several essential skills in game
development on the Android platform.

You will learn

� Displaying graphics

� Creating activities and intents

� Creating an Android service

� Starting and stopping Android threads

� Playing music files

In addition to the splash screen and game menu, you’ll create some
background music to play behind the menu.

There is a lot to cover, so let’s begin with the very first screen that the player will see in
your game, the splash screen.

Building the Splash Screen
The splash screen is the first part of the game that the user is going to see. Think of the
splash screen as the opening credits or title card of your game. It should display the
name of the game, some game images, and maybe some information about who made
the game. The splash screen for Star Fighter is depicted in Figure 3–1.

3

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 28

Figure 3–1. Star Fighter splash screen

For games that are built by multiple people at multiple development shops, you may see
more than one splash screen before a game begins. This is not uncommon as each
development shop, distributer, and producer could have its own splash screens that it
wants posted before the game. However, for our game, we are going to create one
splash screen because you will be the only developer.

If you play any typical game, you will see that the splash screen will generally transition
automatically to the game’s main menu. In Star Fighter, you are going to create a splash
screen that fades in and out to the main menu. Therefore, to create the splash screen,
you will also need to create the activity that will hold the main menu, so that you can
properly set up the fading effect of the splash screen without any errors.

Creating an Activity
To begin, open the Star Fighter project that you created in the preceding chapter. If you
have not created the Star Fighter project, please go back now and do so before
continuing; the remainder of this chapter assumes you are working in the Star Fighter
project.

Your Star Fighter project, in its current state, should contain one activity—
StarfighterActivity. StarfighterActivity was created automatically by Android and
is the automatic entry point to the project. Were you to run your project now,
StarfighterActivity would launch. However, you will actually need two activities for
this chapter: one for the splash screen and one for the game’s main menu. Android has
already provided you an activity for the splash screen, so in the next section, you will
create a new activity for the main menu.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 29

Even though the activity for the main menu will be empty right now, it will allow you to
fully implement the splash screen’s fade transition, a task you’ll tackle in just a bit.

Creating a New Class
To create a new activity, first create a new Java class in your main package. If you are
using the same package name as outlined in the preceding chapter, your main package
is com.proandroidgames. Right-click the package name, and select New ➤ Class to bring
up the New Java Class window shown in Figure 3–2.

Figure 3–2. The New Java Class creation window

Keep most of the default options as they are. All you need to do at this point is provide a
class name. The name for your class should be SFMainMenu. Click the Finish button to
create the class.

Right now, the new class that you created is a simple Java class with the following
code.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 30

package com.proandroidgames;

public class SFMainMenu {

}

However, the class is not yet an activity. For that, you need to add some code to the
class. Once this class is an activity, you can begin to create the splash screen and its
effects.

Transforming the Class to an Activity
Import the Activity package, and extend your SFMainMenu class to turn this Java class
into an Android activity. Your class code should now appear as follows:

package com.proandroidgames;

import android.app.Activity;

public class SFMainMenu extends Activity {

}

Now, let’s associate this activity with the Star Fighter project so that we can create a
splash screen. Open the AndroidManifest.xml file to associate the SFMainMenu activity
with your project, as shown in Figure 3–3.

Figure 3–3. The AndroidManifest.xml

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 31

Scroll to the bottom of the AndroidManifest Application tab, and locate the area labeled
Application Nodes. This area of the manifest lists all of the application nodes that are
associated with your project. Right now, the only application node listed should be
.StarfighterActivity. Because you want to add a new activity, click the Add button,
and select Activity from the screen pictured in Figure 3–4.

Figure 3–4. Creating a new Activity element

This creates an empty Activity element. The empty element that you see in the GUI of
AndroidManifest is a representation of an XML element in the AndroidManifest.xml file.
Click the AndroidManifest.xml view at the bottom of the tab, and you should see the
following snippet of XML code:

<activity></activity>

Obviously, this empty element is not going to do you much good. You need to somehow
tell the AndroidManifest that this activity element represents the SFMainMenu Activity.
This can be done manually of course. However, let’s take a look at doing it the
automated way.

Once you have created the new Activity element, you need to associate that new
element with the actual SFMainMenu activity you created earlier. Click the Activity
element in the Application Nodes section of the AndroidManifest to highlight it. To the
right of the Application Nodes section of the AndroidManifest is a section that is now
labeled Attributes for Activity, as pictured in Figure 3–5.

NOTE: Were you to click .StarfighterActivity, this section would then be labeled

Attributes for .StarfighterActivity.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 32

Figure 3–5. Attributes for an activity

Click the Browse button that is next to the Name attribute to bring up a browsing tool
that shows you all of the available Activity classes from your project. Your browsing
tool options should look like Figure 3–6.

Notice that the SFMainMenu activity is listed in the “Matching items” box. Select the
SFMainMenu activity, and click OK.

TIP: If you do not see the SFMainMenu activity as an option in your “Matching items” box, try
going back to the SFMainMenu tab in Eclipse. If the tab label has an asterisk before the
SFMainMenu name, the file has not been saved. Save the file, and then reopen the Name

attribute browser.

If you still do not see the SFMainMenu, confirm that your SFMainMenu class is extending
Activity. In the event that you are extending Activity in your class and you still do not have

an option to select the SFMainMenu Activity, you can edit the AndroidManifest manually

by filling in the needed element attributes (these are provided later in this chapter).

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 33

Figure 3–6. The Name attribute selector

After you have selected the SFMainMenu as the name attribute for this activity, set the
screen orientation for both the .StarfighterActivity and SFMainMenu activities to
portrait, as shown in Figure 3–7.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 34

Figure 3–7. Setting “Screen orientation” to portrait

Setting the screen orientation for .StarfighterActivity (your splash screen) and
SFMainMenu (the game’s main menu) will lock in the orientation of the screen to portrait.
Given the style of this game, you want the player to be able to use the game only in
portrait mode. Therefore, even if the player tries to rotate a device into landscape mode,
the screens for your game will remain portrait.

The finished XML code of your new SFMainMenu activity should appear like this:

<activity android:name="SFMainMenu" android:screenOrientation="portrait"></activity>

The main menu activity is now associated with the Star Fighter project, and you can
create the splash screen. Keep in mind that all of the code for the main menu will be
added in the following section of the chapter; you just need the activity created now to
properly set up your fading effect.

CAUTION: One of the most common causes of Android application crashes and failures is an
incorrect setting in the AndroidManifest file, which is easily one of the most important files in

your project.

Let’s just quickly review where we are at this point and why. The splash screen that you
are creating for Star Fighter is going to fade into the main menu. You have created the
activity that will hold the main menu, and it is now time to create the splash screen and
the fade effect.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 35

Creating Your Splash Screen Image
Now, you need to import the graphic that you will use for your splash screen image into
your project. Android is capable of working with most common image formats. However,
you are going to stick to two for this game: .png and .9.png. For all of the sprites and
other game images, you are going to use standard .png images, and for the splash
screen and main menu, you are going to use .9.png files.

A .9.png image is also known as a nine-patch image. A nine-patch image is a special
kind of format that allows Android to stretch the image as needed, because it contains a
1-pixel black border around the left and top of the image.

NOTE: Most of the images that you include in your game will not be nine-patch images, because
you will want to controls the manipulation of most images yourself. However, for the splash

screen and main menu, it is fully appropriate to use nine-patch.

The difference between nine-patch and other image resizing processes is that you can
control how Android is allowed to stretch the image by manipulating the black boarder.
Figure 3–8 represents our splash screen image in nine-patch format.

Figure 3–8. Nine-patch splash screen

If you look closely at the left-hand side of the picture in Figure 3–8, you will notice the
thin line of black dots. This black line is what differentiates nine-patch images from other
image formats.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 36

NOTE: The nine-patch image that I have used in this example is meant to stretch freely in all
directions. If there are parts of your images that you do not want to stretch, do not draw a border
at those areas. The draw9patch tool can help you visualize how your image will stretch

depending on how you draw your border.

Unfortunately, applications developed for Android could be run on many different screen
sizes on many different devices, from small mobile phones to larger tablets. Therefore,
your project has to be able to adjust to all of the different screen sizes. If you’re using
the nine-patch image as your splash screen, Android can resize the image (with the help
of some XML) to fit nicely on any screen size.

TIP: If you have never worked with nine-patch graphics, the Android SDK includes a tool that

can help you. In the \tools folder of the SDK, you will find the draw9patch tool. Launch this
tool and you will be able to import any image, draw your nine-patch border, and save the image

back out with the .9.png extension.

Importing the Image
Now that you have your nine-patch image ready, drag the image from wherever you saved
it into the \res\drawable-hdpi folder in your Eclipse project, as shown in Figure 3–9.

You may have noticed that there are three folders to choose from: drawable-hdpi,
drawable-ldpi, and drawable-mdpi. These folders contain the drawables, or images, for
three different types of Android devices: high density (hdpi), medium density (mdpi), and
low desity (ldpi).

Why are we using nine-patch graphics to scale the image to fit any screen if Android
provides a mechanism to include different images for different screen sizes? The short
answer is that the two scenarios are really mutually exclusive. Yes, nine-patch allows for
the scaling of an image to fit a device’s screen, but that has little to do with the screen
density in pixels of the device. The images that you are using (if you use the image from
this project) are high-density images and will display as such. However even as large as
the images are, they are still not the size of a 10.1-inch Motorola Xoom screen.
Therefore, the nine-patch format allows it to be stretched properly.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 37

Figure 3–9. Dragging an image to the drawable-hdpi folder

The true benefit of the high-, medium-, and low-density folder separation comes into
play when you want to use different layouts and image densities to take advantage of
greater screen area or, conversely, to make concessions for screens having less area. If
you want to create a menu screen that has four buttons on it, each stacked on top of the
other for tablet screens but grouped in side-by-side pairs on smaller devices, these
folders will help you achieve that with minimal effort.

For the purposes of our current project, drop your splash screen nine-patch image into
the drawable-hdpi folder. You will not address the use of these folders for this game.
However, feel free to experiment with them on your own to create different experiences
on different devices.

Working with the R.java File
After you drop the image into the folder, Android will create a resource pointer for it. This
pointer is placed in the R.java file, which is automatically generated and should not be

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 38

manually edited. It resides in the gen folder under your package name. If you open the
R.java file after adding your image, it should have code similar to the following:

package com.proandroidgames;

public final class R {
...
 public static final class drawable {
 public static final int starfighter=0x7f020002;
 }
...
}

The R.java file is going to manage all of the images, IDs, layouts, and other resources
used by your project. Because this file now contains a pointer to your image, you can
refer to this image anywhere in your project with the following line of code:

R.drawable.starfighter

CAUTION: Be very careful not to delete or manually modify the R.java file in any way. For
example, the hexadecimal (hex) value for the starfighter image pointer may be different on

your system than in the sample code in this section. Your file will work on your machine because
it was generated in your IDE. If you were to modify your hex value to match the one in the

sample, your file would no longer work as expected.

Now that you have an image in your project that you want to display as the splash
screen, you’ll need to tell Android to display this image to the screen. There are many
ways this can be accomplished. However, because you want to apply a fade effect to
the image, you are going to use a layout.

A layout is an XML file that is used to tell Android how to position resources on a screen.
Let’s create the layout for the splash screen.

Creating a Layout File
You are going to use a simple layout file to display the splash screen image,
starfighter, onto the screen when the player first loads your game. Your splash screen
is going to be straight and to the point—an image of an intriguing space setting and the
name of the game.

Now you have to get this image to the screen so that the player can appreciate it. First,
right-click the res\layout folder, and select New ➤ Other. From the New wizard, select
Android ➤ Android XML File, as shown in Figure 3–10.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 39

Figure 3–10. The Android XML File option

Name your new xml file splashscreen.xml, and finish the wizard. This process will place
a new XML layout file in your layout folder and create a pointer to this file in the R.java
file.

At this point, you can attack the layout in on of two ways. You can use a GUI designer or
directly edit the XML file. We are going to edit the XML file directly so you’ll get a better
understanding of exactly what is going into the layout and why.

Editing the XML File
Double-click the splashscreen.xml file in your res\layout folder to actually open the
GUI designer. However, if you look at the bottom of the designer window in Eclipse, you
will notice two subtabs. One tab, the current tab, is labeled Graphical Layout. The
second tab is labeled splashscreen.xml. This tab is the text editor for the XML file. Click
the splashscreen.xml tab to enter the text editor.

You XML file should look like this:

<?xml version="1.0" encoding="utf-8"?>

This is an empty XML file. Let’s add a layout to this file.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 40

A few different types of layouts can be used in general Android development. Since you
are developing a game, you do not really need to worry about 75 percent of these
layouts because you simply will not come across them in the course of creating Star
Fighter. However, there are two that you could use for this splash screen: LinearLayout
and the FrameLayout. You will use the FrameLayout for Star Fighter, because it is great at
centering elements and pinning them to a border.

LinearLayout is used to display multiple items on a screen and position them one after
the other in either a vertical or horizontal orientation. Think of the LinearLayout as either
a single-column or single-row table. It can be used to place any number of items to the
screen, including other layouts, in an organized and linear fashion.

FrameLayout is used to hold one item. The one item can be gravitationally set so that it is
centered, fills the entire space, or is against any border. The FrameLayout layout seems
almost purposely made to display a splash screen that is composed of a single image.

Using FrameLayout
You are going to use FrameLayout to display the splash screen image and a box of text
that will identify you as the developer. I know I just went through explaining that
FrameLayout was built for displaying one item, and it is. However, if you tell a
FrameLayout to display two items, it will display them overlapping each other with much
less fussing and code than would be required with any other type of layout.

Return to your splashscreen.xml file, and create the FrameLayout as follows:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

</FrameLayout>

A FrameLayout layout only take two properties that you need to worry about right now:
layout_width and layout_height. These two properties are going to tell Android how to
fit the layout onto the activity that you created.

In this situation, you are going to set the layout_width and the layout_height properties
to match_parent. The match_parent constant tells Android that the width and height of
the view should match the width and the height of the parent of that view, in this case,
the activity itself.

TIP: If you have developed on Android before, you may remember a constant called
fill_parent. Fill_parent was replaced with match_parent, but the two constants

function the same way.

Set the FrameLayout properties as show here:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 41

 android:layout_width="match_parent"
 android:layout_height="match_parent">
</FrameLayout>

You now have a functioning FrameLayout, but you have nothing for it to work with. Let’s
add the image and the text.

Adding an Image and Text
Create an ImageView inside your FrameLayout, and give it the ID "splashScreenImage".

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView android:id="@+id/splashScreenImage"
 >
 </ImageView>
</FrameLayout>

You have created the ImageView that will hold your splash screen image. Now, you have
to set the src property to point to the image that you want to display, in this case, the
starfighter image in the res\drawable-hdpi folder. You also need to set the
layout_width and layout_height properties just as you did for the FrameLayout.

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView android:id="@+id/splashScreenImage"
 android:src="@drawable/starfighter"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </ImageView>
</FrameLayout>

Notice that the src property is pointing to “@drawable/starfighter”; this tells Android to
display the starfighter image from the drawable folder. Now for something that is a
little less obvious. If you think back to our discussion on nine-patch images, I mentioned
that we needed some code to make use of the scaling abilities of nine-patch. Setting the
layout_width and/or the layout_height to match_parent will make use of the nine-patch
format to correct scale your image the way you have specified.

Create a TextView now in your layout. This TextView will be used to display whatever
credits or text you want to display on your splash screen.

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView android:id="@+id/splashScreenImage"
 android:src="@drawable/starfighter"

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 42

 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </ImageView>
 <TextView
 android:text="game by: j.f.dimarzio - graphics by: ben eagel"
 android:id="@+id/creditsText"
 </TextView>
</FrameLayout>

There is no voodoo to creating this view, and it should seem fairly straightforward. Once
again, you need to tell Android the layout_width and layout_height of the TextView.
However, if we set the properties to match_parent file as we did on the ImageView and
the FrameLayout, your text would cover the image in a very undesirable way.

Rather, you are going to set the layout_width and layout_height to wrap_content, as
shown below. The wrap_content constant is going to let Android know that you want the
size of the TextView to be determined by the size of the text within it. Therefore, the
more text that you add, the larger the TextView will be.

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView android:id="@+id/splashScreenImage"
 android:src="@drawable/starfighter"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </ImageView>
 <TextView
 android:text="game by: j.f.dimarzio graphics by: ben eagel"
 android:id="@+id/creditsText"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content">
 </TextView>
</FrameLayout>

Finally, you want to the text that is displaying the credits not to be too distracting, so
you are going to set the gravity of the TextView to pull the text to the bottom center of
the FrameView, as shown here.

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView android:id="@+id/splashScreenImage"
 android:src="@drawable/starfighter"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </ImageView>
 <TextView
 android:text="game by: j.f.dimarzio graphics by: ben eagel"
 android:id="@+id/creditsText"
 android:layout_gravity="center_horizontal|bottom"

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 43

 android:layout_height="wrap_content"
 android:layout_width="wrap_content">
 </TextView>
</FrameLayout>

You have successfully created the layout that will display your splash screen. Now, you
just have to tell StarfighterActivity to use this layout.

Connecting StarfighterActivity with the Layout
Connecting StarfighterActivity with the layout is very easy to do and requires only
one line of code.

Save the splashscreen.xml file. Saving the file will create another entry in the R.java file
so that you can reference the layout in your other code.

Open the StarfighterActivity.java file in the root of your project’s source. This file
was created for you automatically when you created the project.

TIP: If you do not have a file named StarfighterActivity.java, check that you following
the directions for creating a project in the previous chapter. If you named your project anything

other than starfighter, your StarfighterActivity will have a different name.

When you open the StarfighterActivity.java file, you are going to see some
automatically generated code that displays a premade layout named main.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class StarfighterActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

Change the setContentView() from displaying the main layout to displaying the
starfighter layout that you just created. The finished activity should look like this.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class StarfighterActivity extends Activity {
 /** Called when the activity is first created. */
 @Override

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 44

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 /*display the splash screen image from a layout*/
 setContentView(R.layout.splashscreen);
 }
}

Compile and run your code by clicking the green circle with the white arrow in it on the
menu bar. You can also press Ctrl + F11 or click Run ➤ Run from the menu.

If you have never compiled or debugged an Android application before, you may see a
screen that asks you if you want to run your application as a JUnit test or an Android
application. You will want to run your application as an Android application. You can
then choose which version of the emulator, or any attached Android debug mode
device, to run your application on.

CAUTION: If you choose to run your code in the Android emulator rather than on an actual
Android phone, you may experience some unexpected results. Keep in mind that the emulator is
exactly that, an emulator, and it is not an exact representation of what your game will look like

on a device. This is not to say that you shouldn’t use the emulator at all; just be cautious until

you see your work on an actual device.

Launch your game, and you should see the splash screen as it appears in Figure 3–11.
This is big accomplishment and the first hurdle in creating the entry point of your game.
However, right now , the screen really doesn’t do much. In fact, it really doesn’t do
anything except display. You need to create the fade in and fade out effects that will
lead from your splash screen to your main menu.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 45

Figure 3–11. The Star Fighter splash screen

Exit StarfighterActivity, and go back to your code. It is time to create the fade in and
fade out effects.

Creating Fade Effects
You are going to use animation to create the effect of fading into the splash screen and
then fading out the splash screen to the main menu. Android has some built-in
animation effects that are very easy to use and very easy to implement.

Why use animation to fade in and fade out? The simple answer is that it is an easy way
to make your game look better. If you just had a static screen that flipped from your
splash screen to your main menu, you would still accomplish the same goal, but by
fading into and out of your screens, you give your game an extra look of
professionalism.

Create two more layout files in the res\layout folder: one named fadein.xml and the
other fadeout.xml. As the names suggest, the fadein.xml file will control the animation
that fades the splash screen onto your device. The fadeout.xml file will control the
animation that fades the splash screen out to the main menu.

The type of animation that you are going to create is called an alpha. “Alpha” refers to
the alpha value of an image, or its transparency. An alpha value of 1 is opaque, and an
alpha value of 0 is transparent. Therefore, to make an image appear as though it is

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 46

fading in, you need to create an animation that adjusts the alpha value of your image
from 0 to 1 over a set amount of time. Conversely, if you want to fade out an image, you
need an animation that adjusts the alpha value of your image from 1 to 0 over a set
duration of time. For this reason, you will create two different alpha animations to control
the fade in and fade out of your splash screen.

After you have created the fadein.xml and fadeout.xml files in your res\layout folder,
double-click the fadein.xml file to open it in the editor. The file should be empty except
for the following line; if it is not, delete the contents of the file will with exception of this
line:

<?xml version="1.0" encoding="utf-8"?>

Now, create an alpha animation thusly:

<?xml version="1.0" encoding="utf-8"?>
<alpha xmlns:android=”http://schemas.android.com/apk/res/android”
/>

You need to define four properties for this animation to complete it: the type of
interpolator to use, the starting and ending alpha values, and the total duration of the
animation in time.

First, let’s define the interpolator. The interpolator tells the animation how to progress.
That is, the animation can just run normally; it can start off slow and build up speed; it
can start off fast and get slower; or it can repeat. For the fade in effect, we are going to
start the animation slowly and then let it build up over the course of a second.

Use the accelerate_interpolator to tell the animation that you want to start off slow
and then accelerate over time. The code that follows illustrates how to implement the
accelerate_interpolator in fadein.xml:

<?xml version="1.0" encoding="utf-8"?>
<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator" />

Your fade in animation will now start off slow and gradually speed up until the fade is
complete. But how long will it run?

Use the android:duration property to tell the alpha animation how long to run. The
android:duration property takes a value in milliseconds. You are going to tell the
animation to run for 1 second by setting the android:duration to 1000.

<?xml version="1.0" encoding="utf-8"?>
<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:duration="1000" />

The final step in creating the fade in animation is to set the properties for the starting
and ending alpha values of your animation. In this case, you are fading from fully
transparent to fully opaque. However, that doesn’t mean that these are your only
options. You can choose to start and end at any values in between. You could have an
animation that started are 25 percent opaque and faded to 100 percent opaque if you
wanted to.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 47

Set the android:fromAlpha and android:toAlpha properties to indicate what alpha
values you want to start and finish at.

<?xml version="1.0" encoding="utf-8"?>
<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:duration="1000"
 android:fromAlpha="0.0"
 android:toAlpha="1.0"/>

CAUTION: The values for fromAlpha and toAlpha are floats and not ints. This is important

because the alpha value only ranges from 0 to 1.

Here, you have set the fromAlpha property to 0.0. This indicates that the animation
begins with the view fully transparent. The toAlpha property has been set to 1.0
indicating that the animation is to end with the view fully opaque. This animation will
provide you with a smooth fade in.

It is now time to create the fade out.

Think about how the fade out should work in relationship to the fade in. The fade out
should work just like the fade in only in reverse. That means that the animation should
use an interpolator that starts off fast and gets slower until it finishes. The animation
should also start with a fully opaque object and transition to a fully transparent one.

Save the fadein.xml file, and open the fadeout.xml. Here too, you should only have one
line of code in fadeout.xml:

<?xml version="1.0" encoding="utf-8"?>

You need to set the android:interpolator, android:duration, android:fromAlpha, and
android:toAlpha for fadeout.xml.

You used the accelerate_interpolator in the fade-in animation to start off at a slow
rate of fade and gradually move to a greater rate. Therefore, to reverse the animation for
a fade out, you are going to use the decelerate_interpolator. The
decelerate_interpolator will start the animation off at a faster rate and slowly decrease
that rate until the animation finishes.

Once again, you will set up an animation duration of 1 second (1000 milliseconds) for the
fade out.

<?xml version="1.0" encoding="utf-8"?>
<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/decelerate_interpolator"
 android:duration="1000" />

Set the properties android:fromAlpha and android:toAlpha to complete the animation.
Because you are fading out from a solid image to nothing, you will be setting the
android:fromAlpha to fully opaque and the android:toAlpha to fully transparent. This will
start the animation at a solid image and fade it to a transparency.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 48

<?xml version="1.0" encoding="utf-8"?>
<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/decelerate_interpolator"
 android:duration="1000"
 android:fromAlpha="1.0"
 android:toAlpha="0.0"/>

You can now save your finished fadeout.xml file.

At this point, you have a layout and two animations to control and define your splash
screen. Now, you need some way to tell the three of them to interact and create an
animation splash screen.

To understand how you are going to create and run the animation, you need to
understand how threading works in relationship to your game.

Threading Your Game
One of the biggest obstacles that you, as a game developer, need to overcome is how
your game runs on any given platform. At its most basic root element, an Android game
is still just a basic Android activity. Every other “application” that is written for Android is
also written as an activity. The only difference between your activity and any other is that
yours will contain a game, whereas others might be business, mapping, or social media
tools.

The problem with this architecture is that, because all Android activities are the same,
they are all treated the same. This means that every Android activity that you write will
run in the main execution thread of the system. This is bad for games.

Running your game in the main execution thread of the system means that your game
has to compete for resources with every other activity running in that thread. This will
lead to a choppy or slow game at best and a game that halts or freezes the device at
worst.

But fear not, there is a way to get around this singly threaded nightmare. You have to
ability to spawn off any number of threads and run anything you want to run within them.
Ideally, you will want your game to run in a thread that is separate everything else that
runs on the device to ensure that your game runs as smoothly as possible and has
access to the resources it needs.

In the remainder of this chapter, you are actually going to spawn two separate threads
for the execution of your game. The first thread, discussed in this section, will be for the
game to run in, and the second thread (which you will create a little later in this chapter)
will be to run any background music that you want to play behind your game.

Why two separate threads? With the exception of animation and game logic, one of the
most processor-intensive things you can do on a device is play media, such as music.
You will ensure that the game and music will run smoothly and concurrently without
interfering with each other. By running the music in a separate thread from the game,
you will also be able to kill the music without interfering with the game play should your
find that the device’s resources are running low.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 49

Now that you understand why you need to spawn different threads for your game, let’s
create one for the main game and splash screen. This game thread will tie together the
splash screen that you created, the fade in and fade out animations, and the main menu.

Creating the Game Thread
Open StarfighterActivity.java once again. Just as a reminder, your file should
currently be able to launch the splash screen and should contain the following code.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class StarfighterActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 /*display the splash screen image from a layout*/
 setContentView(R.layout.splashscreen);
 }
}

Since StarfighterActivity is the activity that is launched by default and the one that
launches the splash screen, it is the perfect place to spawn your game thread. The
thread that you create now is going to be the one that game will eventually run in.

Instantiate a new Thread(), and override the run() method to spawn a new thread.
Within the run() method, call the main menu to run the game in the new thread. This is
the basic roadmap for what you are going to do here.

NOTE: As you progress through building the game, the code in this thread will be modified and

even moved to accommodate more complex processes.

The following code shows where to spawn the new thread within the
StarfighterActivity code.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class StarfighterActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 /*display the splash screen image*/
 setContentView(R.layout.splashscreen);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 50

 /* Start a new game thread */
 new Thread() {
 @Override
 public void run() {

 }
 }
 }
}

There is one problem with this code though. As it is written, the code will spawn the new
game thread within milliseconds of the splash screen being displayed. This would barely
be enough time to render the splash screen. Therefore, you need to delay spawning of
the game thread until the splash screen has had enough time to display.

The answer is to use a time-delayed Handler(). Android has handlers that can manage
threads and activities. The postDelay() method of the Handler() takes two parameters:
the thread that is to be delayed and the amount of time to delay.

You are going to create a new constant to hold the amount of time that you want to
delay your thread. This constant, GAME_THREAD_DELAY, is going to be the first line of code
in your game engine. Placing it there will allow you to adjust the delay on the thread from
a single location without hunting through your code for it.

Create a new class file in your game package called SFEngine.java. This is an empty
class file that will eventually hold the majority of your game engine. Add the following
constant to the class:

package com.proandroidgames;

public class SFEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
}

You are setting the GAME_THREAD_DELAY to 4 seconds; this should be a good amount of
time for the splash screen to display before the main menu fades in.

Save SFEngine.java, and reopen the StarfighterActivity. Let’s wrap the new game
thread in a Handler() and postDelay() it, as shown here.

TIP: Pay close attention to the packages that need to be imported as well; you will receive errors
from your code if you try to call a method that lives in a package you have not yet imported. You

can also use the Ctrl + Shift + O shortcut to automatically import any referenced packages that

you may have missed.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 51

public class StarfighterActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 /*display the splash screen image*/
 setContentView(R.layout.splashscreen);

 /*start up the splash screen and main menu in a time delayed thread*/
 new Handler().postDelayed(new Thread() {
 @Override
 public void run() {

 }
 }, SFEngine.GAME_THREAD_DELAY);

 }
}

Now, you have created the new thread and set a time delay to pause the spawning of
the thread for 4 seconds. Finally, it is time to tell the thread what to do.

Setting a New Intent
In the new thread, you are going to start the main menu activity, kill the splash screen
activity, and set the fading animation. To start a new activity, you have to create an
Intent() method.

Think of Intent() as an operation that you are telling Android to perform. In this case,
you are telling Android to start up your main menu activity. The following code shows
you how to create a new Intent() method for starting the main menu.

package com.proandroidgames;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.os.Handler;

public class StarfighterActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 /*display the splash screen image*/
 setContentView(R.layout.splashscreen);
 /*start up the splash screen and main menu in a time delayed thread*/
 new Handler().postDelayed(new Thread() {
 @Override
 public void run() {
 Intent mainMenu = new Intent(StarfighterActivity.this,
SFMainMenu.class);
 StarfighterActivity.this.startActivity(mainMenu);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 52

 }
 }, SFEngine.GAME_THREAD_DELAY);

 }
}

Let’s discuss what this code does before moving on. The first line creates the new
Intent() named mainMenu within the context of StarfighterActivity, and the activity is
SFMainMenu. The second line uses the StarfighterActivity context to start the mainMenu
activity. Keep in mind all of this is happening within a separate thread from the splash
screen.

Killing the Activity
Now that the main menu is started, you want to kill the splash screen activity. The code
will navigate the play to the main menu regardless, so why kill the splash screen? Think
of it as a bit of housekeeping. By killing the splash screen, you ensure that the play
cannot inadvertently navigate back to using the back button on the device. If the players
were able to navigate back to the splash screen, they could in theory spawn off any
number of concurrent game threads and clog up their devices. Therefore, just to be
safe, you are going to kill the splash screen as shown here.

package com.proandroidgames;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.os.Handler;

public class StarfighterActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 /*display the splash screen image*/
 setContentView(R.layout.splashscreen);

 /*start up the splash screen and main menu in a time delayed thread*/
 new Handler().postDelayed(new Thread() {
 @Override
 public void run() {
 Intent mainMenu = new Intent(StarfighterActivity.this,
SFMainMenu.class);
 StarfighterActivity.this.startActivity(mainMenu);
 StarfighterActivity.this.finish();

 }
 }, SFEngine.GAME_THREAD_DELAY);

 }
}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 53

Finally, your new thread needs the animation that will fade the splash screen into the
main menu. You will use the overridePendingTransition() method to tell Android that
you want to use the two fade animations that you created as the transition from one
activity to the other.

package com.proandroidgames;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.os.Handler;

public class StarfighterActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 /*display the splash screen image*/
 setContentView(R.layout.splashscreen);
 /*start up the splash screen and main menu in a time delayed thread*/
 new Handler().postDelayed(new Thread() {
 @Override
 public void run() {
 Intent mainMenu= new Intent(StarfighterActivity.this,
SFMainMenu.class);
 StarfighterActivity.this.startActivity(mainMenu);
 StarfighterActivity.this.finish();
 overridePendingTransition(R.layout.fadein,R.layout.fadeout);
 }
 }, SFEngine.GAME_THREAD_DELAY);

 }
}

You need to do one last thing before you run your splash screen. In the layout directory,
you should see an automatically generated file named main.xml. Let’s tell the SFMainMenu
activity to use this layout. Since the layout is empty, the activity will not display anything,
but it will help you as you move into the next section of the chapter.

Open SFMainMenu.java, and make sure it has the following code, which should be the
same code that was in the StarfighterActivity before you started modifying it:

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class SFMainMenu extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

Save SFMainMenu.java.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 54

That is all of the code you need to create the splash screen. You should compile and run
this code to see how it works. When you do, your splash screen should be brought to
the screen and then fade to a black screen after 4 seconds.

Your next task is to replace the default ‘Hello World’ screen with the game’s main menu.
In the following section of this chapter, you will create the main menu for the game.
Then, in the final section, you will use your experience creating threads to spawn
another thread for the game music.

Creating the Main Menu
In this section, you are going to create the main menu for the game. The main menu is
going to consist of a background image and two buttons. One button will start the
game; the other will exit the game.

Adding the Button Images
Using the same drag-and-drop process you used earlier, add the images for the buttons
to your res\drawable-hdpi folder. In the project created for this book, there are two
images for the Start button and two images for the Exit button. One image for each
button will be its resting state, and the other image will represent the pressed state.
Figures 3–12 and 3–13 show the two images of the resting states of the Start and Exit
buttons respectively.

NOTE: Notice the black border around the left and top edges of the button images. These button

images are nine-patch.

Figure 3–12. The Start button’s rest state, starfighterstartbtn

Figure 3–13. The Exit button’s rest state, starfighterexitbtn

Figures 3–14 and 3–15 represent the pressed states of the Start and Exit buttons
respectively.

Figure 3–14. The Start button’s pressed state, starfighterstartbtndown

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 55

Figure 3–15. The Exit button’s pressed state, starfighterexitbtndown

NOTE: The code that is list in this section is going to assume that you have named the images

corresponding to the names in the figure captions above. If you name your images differently, be

sure to adjust the code samples as needed.

For the background image of your main menu, in an effort to keep things simple, we are
going to use the same image as your splash screen. Of course, you should feel free to
change this however you like and use whatever image you want to use for your main
menu. However, for the purposes of this book, you are going to use the splash screen
image behind the main menu as well.

Open the main.xml that is located in the layout folder. This file should have been created
automatically when you created your project.

CAUTION: If you find that you do not have a main.xml file, create one now using the same
instructions for creating splashscreen.xml in the preceding section of this chapter. Make

sure you have a main.xml file and it is empty before proceeding in this section.

Once again, your main.xml should be empty except for the following line of code. If it is
not, clear whatever text is in it with the exception of the following:

<?xml version="1.0" encoding="utf-8"?>

You are going to use a RelativeLayout layout to hold the background image and the
buttons. Using RelativeLayout gives you control over the precise locations of the views
that you place within the layout.

Create RelativeLayout as follows:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >

</RelativeLayout>

Here, you have created a RelativeLayout layout with layout_width and layout_height
properties set to match_parent.

Next, add the ImageView that will hold the background image. This code is very close to
code you wrote in the last section for the splash screen, so I will go light on the

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 56

explanations. If you need a refresher on what any of these views do, please refer to the
previous section.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <ImageView android:id="@+id/mainMenuImage"
 android:src="@drawable/starfighter"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </ImageView>

 </RelativeLayout>

Next, you have to place the buttons on the screen, but before that, you have to work a
little magic.

Setting the Layouts
Right-click the res\drawable-hdpi folder, and add two new XML files:
startselector.xml and exitselector.xml. These files are going to hold a selector that
tells your button images to change based on the state of the button. This is what is
going to allow your change the image of the button when the player presses it.

Add the following code to startselector.xml:

<?xml version="1.0" encoding="utf-8"?>
<selector
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true"
android:drawable="@drawable/starfighterstartbtndown" />
 <item android:drawable="@drawable/starfighterstartbtn" />
</selector>

Notice that the selector has two item properties, one represents the state of the button if
it is pressed (android:state_pressed="true") and the other represents the button in its
normal at rest state (no designation other than the image). The property for the pressed
state has an image set to the starfighterstartbtndown image, and the rest state image
is the starfighterstartbtn image.

Setting the src property of an ImageButton to this selector will have the result of
changing the image of the button as the player presses it.

Set the exitselector.xml code as follows to accomplish the same result for the Exit button:

<?xml version="1.0" encoding="utf-8"?>
<selector
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true" android:drawable="@drawable/starfighterexitbtndown"
/>
 <item android:drawable="@drawable/starfighterexitbtn" />
</selector>

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 57

With the selectors created to change your button images, you can add the ImageButtons
to the layout in main.xml.

Because you want the buttons aligned to the bottom of the screen, you are going to set
the alignParentBottom property to true on the RelativeLayout that holds the buttons.
Then, setting the height to wrap_content and the width to match_parent will make the
layout only as high as the buttons within it and as wide as the screen.

The Start button will be aligned with the left edge of the screen, and the Exit button will
be aligned with the right. This will place the buttons to the lower corners of the screen.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <ImageView android:id="@+id/mainMenuImage"
 android:src="@drawable/starfighter"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </ImageView>
 <RelativeLayout
 android:id="@+id/buttons"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:layout_alignParentBottom="true"
 android:layout_marginBottom="20dp">
 <ImageButton
 android:id="@+id/btnStart"
 android:clickable="true"
 android:layout_alignParentLeft="true"
 android:layout_width="wrap_content"
 android:src="@drawable/startselector"
 android:layout_height="wrap_content" >
 </ImageButton>
 <ImageButton
 android:id="@+id/btnExit"
 android:layout_width="wrap_content"
 android:src="@drawable/exitselector"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:clickable="true" >
 </ImageButton>

 </RelativeLayout>
 </RelativeLayout>

Notice that the src properties of the Start and Exit buttons are set to the start and exit
selectors that you created to change the image of the button.

If you run your game now, you should see your splash screen fade into the main menu.
The main menu should look something like Figure 3–16. Notice the placement of the
buttons and the button images. Try pressing a button and see if the image changes.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 58

NOTE: You may notice that your image buttons have a gray background to them instead of the
transparent background in Figure 3–16. You are going to set the ImageButton backgrounds to
transparent in the SFMainMenu.java code later in this chapter, and doing so will remove the

gray.

Figure 3–16. The main menu

Wiring the Buttons
The only thing left to do on the main menu is to wire up the buttons so that they actually
perform a function. The Exit button will be set up to exit the game and kill all threads.
The Start button will start the first level of the game. Since you have not created the first
level of the game yet, you are just going to stub out the Start button.

Open the SFEngine.java game engine code. You need to create a few more constants
that will be used in the main menu and a function that will do the exit cleanup work.
Right now, the engine should look like this:

package com.proandroidgames;

public class SFEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 59

You need to add two constants: one for setting the transparency of the Start and Exit
buttons and one for setting the haptic feedback of the buttons.

NOTE: The haptic feedback is the tactile response the certain devices can give when you touch

buttons.

Add the following constants to SFEngine:

package com.proandroidgames;

public class SFEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int MENU_BUTTON_ALPHA = 0;
 public static final boolean HAPTIC_BUTTON_FEEDBACK = true;
}

Next, create a new method that returns a Boolean value. This method will be called
when the Exit button is pressed to perform any housekeeping that is needed in the
game before it can exit cleanly.

package com.proandroidgames;

�������	
������
����������

public class SFEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int MENU_BUTTON_ALPHA = 0;
 public static final boolean HAPTIC_BUTTON_FEEDBACK = true;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 return true;
 }catch(Exception e){
 return false;
 }

 }
}

Now, there is no housekeeping for this method to perform, so it is just going to return
true and let the game proceed with its exit routine.

Save the game engine, and open the SFMainMenu.java file.

The first thing you are going to do in the main menu code is to set the background
transparency of the image buttons and set up the haptic feedback.

package com.proandroidgames;

import android.app.Activity;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 60

import android.widget.ImageButton;
import android.os.Bundle;

public class SFMainMenu extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 /** Set menu button options */
 ImageButton start = (ImageButton)findViewById(R.id.btnStart);
 ImageButton exit = (ImageButton)findViewById(R.id.btnExit);

 start.getBackground().setAlpha(SFEngine.MENU_BUTTON_ALPHA);
 start.setHapticFeedbackEnabled(SFEngine.HAPTIC_BUTTON_FEEDBACK);

 exit.getBackground().setAlpha(SFEngine.MENU_BUTTON_ALPHA);
 exit.setHapticFeedbackEnabled(SFEngine.HAPTIC_BUTTON_FEEDBACK);
 }
}

Here, you are creating two more ImageButtons in memory. Then, using the
findViewById() method, you set those in memory buttons to the actual buttons on the
main menu. Finally, you set the background transparency and the haptic feedback of
each button.

Adding onClickListeners
Next, you need to establish two onClickListeners for the buttons: one for the Start
button and one for the Exit. The onClickListener() method will be executed when the
player presses (or clicks) the respective button. Any code that you want executed when
either button is pressed needs to be called from that button’s onClickListener().

For now, onClickListener() for the Start button is not going to do anything. You are just
going to stub it out in preparation for the next chapter where the game play will begin.
The onClickListener() for the exit button will call the onExit() function in the game
engine, and if the function returns true, the game will be exited.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ImageButton;

public class SFMainMenu extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 61

 setContentView(R.layout.main);

 final SFEngine engine = new SFEngine();

 /** Set menu button options */
 ImageButton start = (ImageButton)findViewById(R.id.btnStart);
 ImageButton exit = (ImageButton)findViewById(R.id.btnExit);

 start.getBackground().setAlpha(SFEngine.MENU_BUTTON_ALPHA);
 start.setHapticFeedbackEnabled(SFEngine.HAPTIC_BUTTON_FEEDBACK);

 exit.getBackground().setAlpha(SFEngine.MENU_BUTTON_ALPHA);
 exit.setHapticFeedbackEnabled(SFEngine.HAPTIC_BUTTON_FEEDBACK);

 start.setOnClickListener(new OnClickListener(){
 @Override
 public void onClick(View v) {
 /** Start Game!!!! */
 }

 });

 exit.setOnClickListener(new OnClickListener(){
 @Override
 public void onClick(View v) {
 boolean clean = false;
 clean = engine.onExit(v);
 if (clean)
 {
 int pid= android.os.Process.myPid();
 android.os.Process.killProcess(pid);
 }
 }
 });
 }

}

Save SFMainMenu.java, and run your code. You should now be able to click the Exit
button to close the game. The buttons should also have transparent backgrounds, and
the splash screen should fade smoothly into the main menu.

The final step in creating a pretty professional splash screen and main menu is adding
some background music.

Adding Music
In this section, you will learn how to spawn a second thread from your game. This thread
will be used to run the background music that will play behind your main menu. You will
spawn a thread, create a service that will play the music, and then kill the music and the
thread in the housekeeping function of the engine.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 62

CAUTION: If you have never worked with music files and Android before, be cautious about the
size of your files. If your media files are too large, you may consume all of the available memory
for your activity and crash it. I try to keep things like background music to a small 10 or 15

second loop that can be repeated.

The first thing that you will need to do is add a res\raw folder. All music files are stored
in the raw folder, but unfortunately, this folder is not created for you when you create the
project. Right-click the res folder and select New ➤ Folder. Name the folder raw, as
shown in Figure 3–17.

Figure 3–17. Creating the raw folder

The next step is to copy your media files into the res\raw folder.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 63

NOTE: The music that is distributed with this code is royalty free music through the Creative
Commons licensing agreement from Matt McFarland at www.mattmcfarland.com. I have

taken 15-second samples from his songs to loop during parts of this book’s game.

If you are using the files from this project, the music for the main menu is
warfieldedit.ogg. Once again, feel free to use whatever music you want to for the main
menu; just try to mind the size.

Next, let’s add some more constants to the engine that will be used in the music service.
Open SFEngine.java, and add the following constants:

package com.proandroidgames;

import android.content.Context;
import android.view.View;

public class SFEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int MENU_BUTTON_ALPHA = 0;
 public static final boolean HAPTIC_BUTTON_FEEDBACK = true;
 public static final int SPLASH_SCREEN_MUSIC = R.raw.warfieldedit;
 public static final int R_VOLUME = 100;
 public static final int L_VOLUME = 100;
 public static final boolean LOOP_BACKGROUND_MUSIC = true;
 public static Context context;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 return true;
 }catch(Exception e){
 return false;
 }

 }

}

SPLASH_SCREEN_MUSIC is a constant pointer to the actual music file that you will be
playing, in this case, warfieldedit.ogg. The R_VOLUME and L_VOLUME variables will set the
initial volume for the music, and LOOP_BACKGROUND_MUSIC is a Boolean value that tells the
service whether or not to loop. Finally, the context variable will hold the current context
of the thread that the music is playing in so that we can kill it during the game’s
housekeeping. All of these new constants and variables will be called from the service.

Now, let’s create a service that will play this music file. You can then launch this service
in a thread from the main menu.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 64

Creating a Music Service
Add a new class file named SFMusic.java to the game package. You should have a
blank class as follows:

package com.proandroidgames;

public class SFMusic {

}

The first thing you need to do is to have this class extend Service:

package com.proandroidgames;

import android.app.Service;

public class SFMusic extends Service{

}

At this point, Eclipse may be throwing an error at you, because you have not
implemented all of the methods that are required to extend Service. Just ignore that
error for now. Add the following methods to your service:

package com.proandroidgames;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class SFMusic extends Service{

 @Override
 public IBinder onBind(Intent arg0) {
 return null;
 }

 @Override
 public void onCreate() {
 super.onCreate();

}

 public int onStartCommand(Intent intent, int flags, int startId) {
 return 1;
 }
 public void onStart(Intent intent, int startId) {

 }
 public void onStop() {

 }

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 65

 public IBinder onUnBind(Intent arg0) {
 // TODO Auto-generated method stub
 return null;
 }
 public void onPause() {

 }

 @Override
 public void onDestroy() {

 }

 @Override
 public void onLowMemory() {

 }

}

With the service code stubbed out, let’s create two variables. The first is a Boolean
called isRunning. This will be used to query the service to find out if it is running. At
times, you will need to know if the service is running so you can either kill the music, if it
is still running, or restart it, if it has stopped.

NOTE: Initially the isRunning Boolean will be set to false. When the service actually starts,

you will set it to true.

The second variable that you need to create is the MediaPlayer, which will actually play
your music.

package com.proandroidgames;

import android.app.Service;
import android.media.MediaPlayer;
import android.content.Intent;
import android.os.IBinder;

public class SFMusic extends Service{
 public static boolean isRunning = false;
 MediaPlayer player;
 @Override
 public IBinder onBind(Intent arg0) {
 return null;
 }

 @Override
 public void onCreate() {
 super.onCreate();

}

 public int onStartCommand(Intent intent, int flags, int startId) {

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 66

 return 1;
 }
 public void onStart(Intent intent, int startId) {

 }
 public void onStop() {

 }

 public IBinder onUnBind(Intent arg0) {
 // TODO Auto-generated method stub
 return null;
 }
 public void onPause() {

 }

 @Override
 public void onDestroy() {

 }

 @Override
 public void onLowMemory() {

 }

}

Next, you need to create a method in the service that will set the options for
MediaPlayer. These are the options that we create constants for in the engine: volume,
looping, and media file. This method will take in the constants that you created and pass
them directly to the MediaPlayer. You will call this method from the onCreate() method
so that, as soon as the service is created, the MediaPlayer options are set.

package com.proandroidgames;

import android.app.Service;
import android.media.MediaPlayer;
import android.content.Intent;
import android.os.IBinder;
import android.content.Context;

public class SFMusic extends Service{
 public static boolean isRunning = false;
 MediaPlayer player;
 @Override
 public IBinder onBind(Intent arg0) {
 return null;
 }

 @Override
 public void onCreate() {
 super.onCreate();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 67

setMusicOptions(this,SFEngine.LOOP_BACKGROUND_MUSIC,SFEngine.R_VOLUME,SFEngine.L_VOLUME,
SFEngine.SPLASH_SCREEN_MUSIC);

}
 public void setMusicOptions(Context context, boolean isLooped, int rVolume,
int lVolume, int soundFile){
 player = MediaPlayer.create(context, soundFile);
 player.setLooping(isLooped);
 player.setVolume(rVolume,lVolume);
 }
 public int onStartCommand(Intent intent, int flags, int startId) {
 return 1;
 }
 public void onStart(Intent intent, int startId) {

 }
 public void onStop() {

 }

 public IBinder onUnBind(Intent arg0) {
 // TODO Auto-generated method stub
 return null;
 }
 public void onPause() {

 }

 @Override
 public void onDestroy() {

 }

 @Override
 public void onLowMemory() {

 }

}

The last code that you need to add to the service indicates all of the places where the
media play is started and stopped. This code should be very easy to follow, but it is a
little scattered. Think about it logically; you are going to start the music in any of the
methods that deal with starting or creating and stop the music in any of the methods
that deal with stopping. Be sure to set the isRunning Boolean accordingly so that you
can correctly query if the service is running.

package com.proandroidgames;

import android.app.Service;
import android.content.Context;
import android.content.Intent;
import android.media.MediaPlayer;
import android.os.IBinder;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 68

public class SFMusic extends Service{
 public static boolean isRunning = false;
 MediaPlayer player;

 @Override
 public IBinder onBind(Intent arg0) {
 return null;
 }

 @Override
 public void onCreate() {
 super.onCreate();

setMusicOptions(this,SFEngine.LOOP_BACKGROUND_MUSIC,SFEngine.R_VOLUME,SFEngine.L_VOLUME,
SFEngine.SPLASH_SCREEN_MUSIC);
 }
 public void setMusicOptions(Context context, boolean isLooped, int rVolume,
int lVolume, int soundFile){
 player = MediaPlayer.create(context, soundFile);
 player.setLooping(isLooped);
 player.setVolume(rVolume,lVolume);
 }
 public int onStartCommand(Intent intent, int flags, int startId) {
 try
 {
 player.start();
 isRunning = true;
 }catch(Exception e){
 isRunning = false;
 player.stop();
 }

 return 1;
 }
 public void onStart(Intent intent, int startId) {

 }
 public IBinder onUnBind(Intent arg0) {
 // TODO Auto-generated method stub
 return null;
 }
 public void onStop() {
 isRunning = false;
 }
 public void onPause() { }
 @Override
 public void onDestroy() {
 player.stop();
 player.release();
 }
 @Override
 public void onLowMemory() {
 player.stop();
 }

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 69

}

The code for the service is now written. However, before you can use it, you need to
associate the service with your Android project. Previously you used the
AndroidManifest to associate a new Activity with the project. You follow the same
procedure to associate your new SFMusic service with the project.

Open AndroidManifest.xml, and click the Application tab near the bottom of the editor
window. Once you have the Application tab open, scroll to the bottom of the window to
the Application Nodes section. Click the Add button to add a new node, and select
Service from the list.

Click the new Service node in the Application Nodes windows, and navigate to
Attributes for Service on the right-hand side of the editor window. You should now be
able to click the Browse button to the right of the Name attribute. Locate your SFMusic
service in the browser, and finish the operation.

Now, you are ready to use your music service in your game.

Playing Your Music
Open the SFEngine.java, and add a new public Thread() named musicThread. You will
initialize this thread in the SFMainMenu.

package com.proandroidgames;

import android.content.Context;
import android.content.Intent;
import android.view.View;

public class SFEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int MENU_BUTTON_ALPHA = 0;
 public static final boolean HAPTIC_BUTTON_FEEDBACK = true;
 public static final int SPLASH_SCREEN_MUSIC = R.raw.warfieldedit;
 public static final int R_VOLUME = 100;
 public static final int L_VOLUME = 100;
 public static final boolean LOOP_BACKGROUND_MUSIC = true;
 public static Context context;
 public static Thread musicThread;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 return true;
 }catch(Exception e){
 return false;
 }

 }

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 70

Now, open SFMainMenu.java, and create a new Thread() assigned to musicthread to run
your music service.

package com.proandroidgames;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ImageButton;

public class SFMainMenu extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 /** Fire up background music */
 SFEngine.musicThread = new Thread(){
 public void run(){
 Intent bgmusic = new
Intent(getApplicationContext(), SFMusic.class);
 startService(bgmusic);
 SFEngine.context = getApplicationContext();
 }
 };
 SFEngine.musicThread.start();

 final SFEngine engine = new SFEngine();

 /** Set menu button options */
 ImageButton start = (ImageButton)findViewById(R.id.btnStart);
 ImageButton exit = (ImageButton)findViewById(R.id.btnExit);

 start.getBackground().setAlpha(SFEngine.MENU_BUTTON_ALPHA);
 start.setHapticFeedbackEnabled(SFEngine.HAPTIC_BUTTON_FEEDBACK);

 exit.getBackground().setAlpha(SFEngine.MENU_BUTTON_ALPHA);
 exit.setHapticFeedbackEnabled(SFEngine.HAPTIC_BUTTON_FEEDBACK);

 start.setOnClickListener(new OnClickListener(){
 @Override
 public void onClick(View v) {
 /** Start
Game!!!! */
 }

 });

 exit.setOnClickListener(new OnClickListener(){
 @Override
 public void onClick(View v) {
 boolean clean =
false;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 71

 clean =
engine.onExit(v);
 if (clean)
 {

int pid= android.os.Process.myPid();

android.os.Process.killProcess(pid);
 }
 }
);
 }

}

Finally, you need to kill the background music service during housekeeping. Go back to
SFEngine, and add the following code to kill the service and thread:

package com.proandroidgames;

import android.content.Context;
import android.content.Intent;
import android.view.View;

public class SFEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int MENU_BUTTON_ALPHA = 0;
 public static final boolean HAPTIC_BUTTON_FEEDBACK = true;
 public static final int SPLASH_SCREEN_MUSIC = R.raw.warfieldedit;
 public static final int R_VOLUME = 100;
 public static final int L_VOLUME = 100;
 public static final boolean LOOP_BACKGROUND_MUSIC = true;
 public static Context context;
 public static Thread musicThread;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 Intent bgmusic = new Intent(context, SFMusic.class);
 context.stopService(bgmusic);
 musicThread.stop();
 return true;
 }catch(Exception e){
 return false;
 }

 }

}

Compile and run your game. You should now have a working splash screen with
background music that exits cleanly. In the next chapter, you will begin to build the first
level of the game, starting with its background.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 3: Press Start: Making a Menu 72

Summary
In this chapter, you set forth the first code for your game. You created a splash screen
that faded in and then faded out to the game’s main menu. You also created the game’s
main menu with options to start and exit. Last, you used the media player and a raw
music file to add some background music to your game.

In the next chapter, you will create a two-layer, scrolling background for your game.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

73

 Chapter

Drawing The Environment
In this chapter you are going to learn how to render a background to your game. The
background sets the tone and the environment for the game. For Star Fighter, the
environment is going to be a background of stars, planets, space ships, and debris. You
are going to use OpenGL to set the background into the game and render it to the
screen.

Given that a single background is pretty impressive, two backgrounds must be twice as
impressive. Well, not quite – but two backgrounds that run at different speeds give your
game a visual depth that can be very interesting. You will be adding a second layer of
background to your game that will scroll at a faster speed than the first.

Later in the chapter, you will take a break from the game setting and work on making
your game run at 60 frames per second. While many devices may not be able to run a
fully completed game at a full 60 frames per second, it is the goal of most game
developers.

No matter how good your game is, it will serve no purpose if the player cannot access it.
Therefore, in this chapter you will also modify your main menu to be able to launch the
game when the player selects the start option.

By this point in the book you should have a working splash screen that fades into the
main menu of the game and some looping background music. This is a big
accomplishment; however the code will more complicated in this chapter. Again, feel
free to skip around the chapter, but realize that most of the examples will be cumulative
in that they will all build in previous examples.

Finally, in this chapter, you be introduced to a good deal of OpenGL. I do realize that
most casual Android developers may not have had too extensive of an exposure to
OpenGL. I will try to give as much background and instructions in OpenGL as you
proceed through the chapter.

With that said, let’s jump right into drawing the background of the game.

4

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 74

Rendering the Background
In the previous chapter, you used Android’s ImageView to display a bitmap as the splash
screen of your game. This is an acceptable solution for a splash screen and a main
menu. But there is too much overhead and not enough flexibility in this process to use it
for the graphics of the game. If you were to somehow find a way to use this process to
display your game graphics ,the game would run very slow, if it could load at all.

To quickly draw the background of this game to the screen, you need a tool that is both
lightweight and flexible. Luckily, Android has an implementation of just such a tool:
OpenGL ES. OpenGL ES is the OpenGL standard for Embedded Systems (I will just refer
to it as OpenGL in this book for the ease of the discussion). It has been on Android, in
various forms, from the first SDK releases. OpenGL offers a useful, flexible, and fairly
established way to work with game graphics.

In the beginning, the implementation of OpenGL on Android was very buggy and not as
feature rich as some other systems. However, as more Android versions have come out,
the implementations of OpenGL have gotten more solid. This is not to say that there are
not still —you will learn about at least one important OpenGL bug in this chapter.

You will be creating a fairly complicated two-layer, repeating, scrolling background for
Star Fighter. Specifically, you will have a larger background image that is scrolling (and
repeating) that is partially overlaid with a second scrolling image moving at a faster rate.
This will give the background a complex look that has a 3-D effect. Figure 4–1 shows
what the finished backgrounds will look like.

Figure 4–1. The finished backgrounds

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 75

To begin, you need a new activity to run your game. This activity will be launched when
the player clicks on the Start button that you created in your main menu in the previous
chapter.

Creating the Creating the Creating the
The game activity is the Android activity that will be launched when you start your actual
game, at least the part of the game that the player will actually be playing (as opposed
to the splash screen or main menu). While the splash screen and menu may seem like
parts of the game, for this chapter’s purposes, you are separating them out based on
function.

You have created several key features of the game to this point, but you have yet to
write any of the code that will power the game play. That is going to change now. You
are going to create the activity that will run the game play of Star Fighter.

Create a new class in your main package named SFGame.java. After the class is created,
open it in Eclipse. It should look like this:

package com.proandroidgames;

public class SFGame {

}

NOTE: Keep in mind that if you have not followed this book in order, the code that you see here

may differ from yours because you may have created your base with a different package or class

name.

Modify your SFGame class to extend Activity, and include any unimplemented methods.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class SFGame extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView();
 }

}

TIP: At this point, you should follow the directions in the previous chapter to associate the

SFGame Activity with the StarFighter project using the AndroidManifest.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 76

Save this file as it is. It cannot do much now. In fact, it is barely a shell of an activity, and
if you were to run it now, you would be lucky to get a blank screen, but you would most
likely receive a nice syntax error.

You need to build a view that the SFGame activity can display. The view will make the
calls that display the game to the screen. The SFGame activity is the view’s conduit to get
to the screen.

Let’s talk a little about what is going to happen next.

Creating a Game View
In Chapter 3, you used a premade Android view called an ImageView to display the
splash screen and the main menu for your game. This is an acceptable method for
displaying static graphics. However, you are created a limit pushing game here. A view
with as much overhead and as limited of a function set as the ImageView simply will not
give you the flexibility that you need to create a game. Therefore, you need to look
elsewhere for you graphic rendering tools.

Android comes with just the right tool for the job, OpenGL. You will use OpenGL to
display and manipulate the game graphics. It gives you the power and the flexibility that
you need to quickly display 2D and 3D graphics and is perfect for the kind of game you
are writing now.

If you have done any Android development in the past, you may have used the canvas
to draw to the screen. OpenGL has its own type of canvas that you need to use to
display OpenGL graphics to the screen. The GLSurfaceView will allow you the ability to
display your games graphics to the screen.

To this point, you have created the SFGame activity, but you now need something for it to
display. Let’s create a new class named SFGameView:

package com.proandroidgames;

public class SFGameView{

}

Now, modify this class to extend GLSurfaceView.

package com.proandroidgames;

import android.opengl.GLSurfaceView;

public class SFGameView extends GLSurfaceView {

}

With the class that extends the GLSurfaceView created, you can add a reference to it in
your SFGame activity. In the previous chapter, you set the value for setContentView() in
your StarFighter activity to a layout. As of right now, the setContentView() value for the
SFGame activity is not set, or it is set to a default main layout. However, you can set this

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 77

value to a GLSurfaceView. Setting the SFGame setContentView() to the SFGameView that
you just created will let you begin to work with and display OpenGL.

Open the SFGame activity, and create an instance of the SFGameView GLSurfaceView that
you just created.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class SFGame extends Activity {

 private SFGameView gameView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView();
 }
}

Now, instantiate the SFGameView, and set the setContentView() to the new instance.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class SFGame extends Activity {
 private SFGameView gameView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 gameView = new SFGameView(this);
 setContentView(gameView);
 }
}

This is enough code to display the game using the SFGameView. However, you do want to
think ahead here and consider things that can happen to your game as the player is
using it. If you put in some extra time now, you can avoid some very painful headaches
very simply.

Using onResume() and onPause()
One of the most common things that can happen is that the player can interrupt the
game by giving another Activity focus. This can happen either intentionally—if the
player starts another activity and gives it focus—or unintentionally—if the player receives
a phone call during the game. Either situation can wreak havoc on your game if not
handled properly. Surprisingly enough, these two situations are fairly easy to code for.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 78

Android provides a couple of handlers just for situations where your activity could be
interrupted. If your activity loses focus to another, whether intentionally or not, Android
will send a pause event to your activity. When your activity becomes the active one
again, Android will send it a resume event.

The Activity class can implement onPause() and onResume() to deal with these
situations. Simply override these in your SFGame activity as follows:

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class SFGame extends Activity {

 private SFGameView gameView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 gameView = new SFGameView(this);
 setContentView(gameView);
 }
 @Override
 protected void onResume() {

 }

 @Override
 protected void onPause() {

 }

}

Now, you can add some code that will pause and resume your game activity as
necessary.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class SFGame extends Activity {
 private SFGameView gameView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 gameView = new SFGameView(this);
 setContentView(gameView);
 }
 @Override
 protected void onResume() {
 super.onResume();
 gameView.onResume();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 79

 }

 @Override
 protected void onPause() {
 super.onPause();
 gameView.onPause();
 }

}

NOTE: The onResume() and onPause() functions refer to the pausing of the activity execution

itself, not the pausing of the game. Pausing the game is handled separately.

Save your SFGame class once again. You now have an activity that displays a
GLSurfaceView. You need to create something for the SFGameView to display through the
SFGame activity. What you need to create is a GLSurfaceView renderer.

Creating a Renderer
The GLSurfaceView that you created, SFGameView, is only a view for displaying OpenGL
through. The GLSurfaceView needs the assistance of a renderer to do the heavy lifting.
Theoretically, you could incorporate the renderer into the GLSurfaceView. However, I
prefer having a clean separation of the code to give some distinction between the
functions; it makes troubleshooting a little easier.

Create a new class in your StarFighter package called SFGameRenderer.

package com.proandroidgames;

public class SFGameRenderer{

}

Now you need to implement the GLSurfaceView’s renderer.

package com.proandroidgames;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

}
Be sure to add in the unimplemented methods:
package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 80

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 }
}

The function of these methods should be fairly self-explanatory. The onDrawFrame()
method is called when the renderer is draws a frame to the screen. The
onSurfaceChanged() method is called when the size of the view has changed, even at
the time of the initial change. Finally, the onSurfaceCreated() method is called when the
GLSurface is created.

Let’s start coding them in the order that they are called. First up is onSurfaceCreated().

Creating your OpenGL Surface
In onSurfaceCreated(), you are going to initialize your OpenGL and load your textures.

TIP: In OpenGL parlance, a texture can also be an image, like your background. You will get to
this later in the chapter, but technically, you will be using the background image for this game as

a texture that is applied to two flat triangles and displayed.

The first step is to enable the 2-D texture mapping capabilities of OpenGL

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 @Override
 public void onDrawFrame(GL10 gl) {
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 }

 @Override

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 81

 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glEnable(GL10.GL_TEXTURE_2D);
 }
}

Notice that the onSurfaceCreated() takes an instance of OpenGL (GL10 gl) as a
parameter. This instance will be passed in to the method by the GLSurfaceView when the
renderer is called. You do not have to worry about creating an instance of GL10 for this
process; it will be done for you automatically.

Next, you want to tell OpenGL to test the depth of all of the objects in your surface. This
will need some explaining. Even though you are creating a 2-D game, you will need to
think in 3-D terms.

Imagine that the OpenGL environment is a stage. Everything that you want to draw in
your game is an actor on this stage. Now, imagine that you are filming the actors as they
move around on the stage. The resulting movie is a 2-D representation of what is
happening. If one actor moves in front of another actor, that actor will not be visible on
the film. However, if you are watching these actors live in a theater, depending on where
you are sitting you may still be able to see the actor in the back.

This is the same idea that OpenGL is working under. Even though you are making a 2-D
game, OpenGL is going to treat everything as if it were a 3-D object in 3-D space. In
fact, one of the only differences to developing in 2-D and 3-D in OpenGL is how you tell
OpenGL to render the final scene. Therefore, you need to be mindful of where your
objects are placed in the 3-D space to make sure they render properly as a 2-D game.
By enabling OpenGL depth testing next, you give OpenGL a means by which to text
your textures and determine how they should be rendered.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 @Override
 public void onDrawFrame(GL10 gl) {
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 }
}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 82

The two last lines of code that you will add to this method concern blending. You don’t
have to be too concerned about this right now, because you really won’t notice the
effects of this code until much later in this chapter. All of the images that you are going
to draw in your game are going to have areas that should be transparent. These two
lines of code will set OpenGL’s blending feature to create transparency.

 package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 @Override
 public void onDrawFrame(GL10 gl) {
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);
 }
}

Loading Game Textures
The next thing you should do in the onSurfaceCreated() method is load your textures.
However, that is going to be a somewhat involved process, and you will tackle it in the
next section. For now, put a comment in the code to indicate that you are coming back
to it, and let’s move on to onSurfaceChanged().

NOTE: All of the textures you add throughout the game will be added in the

onSurfaceCreated() method.

public class SFGameRenderer implements Renderer{
 @Override
 public void onDrawFrame(GL10 gl) {
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 83

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 //TODO Add texture loading for background image
 }
}

The onSurfacedChanged() method is going to handle all of the setup needed to display
your images. Every time the screen is resized, the orientation is changed, and on the
initial startup, this method is called.

You need to set up glViewport() and call the rendering routine to complete
onSurfacedChanged().

The glViewport() method takes four parameters. The first two parameters are the x and
y coordinates of the lower left-hand corner of the screen. Typically, these values will be
(0,0) because the lower left corner of the screen will be where the x and y axes meet—
the 0 coordinate of each. The next two parameters of the glViewport() method are the
width and the height of your viewport. Unless you want your game to be smaller than the
device’s screen, these should be set to the width and the height of the device.

public class SFGameRenderer implements Renderer{
 @Override
 public void onDrawFrame(GL10 gl) {
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

 gl.glViewport(0, 0, width,height);
 }

...

}

Notice that the calling surface, in this case SFGameView, sends in width and height
parameters to the onSurfacedChanged() method. You can just set the width and the
height of the glViewport() to the corresponding width and height sent in by
SFGameView.

NOTE: The width and height sent in by SFGameView will represent the width and height of

the device minus the notification bar at the top of the screen.

If the glViewport() represents the lens through which your scene is filmed, the
glOrthof() is the image processor. With the view port set, all you have to do now is use
glOrth0f() to render the surface.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 84

Rendering the Surface
To access glOrthof() you need to put OpenGL into projection matrix mode. OpenGL
has different matrix modes that let you access different parts of the engine. Throughout
this book, you will access most if not all of them. This is the first one you will work with.
Projection matrix mode gives you access to the way in which your scene is rendered.

To access projection matrix mode you need to set glMatrixMode() to GL_PROJECTION.

public class SFGameRenderer implements Renderer{
 @Override
 public void onDrawFrame(GL10 gl) {
 }

...

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 //TODO Add texture loading for background image
 }
}

Now that OpenGL is in projection matrix mode, you need to load the current identity.
Think of the identity as the default state of OpenGL.

public class SFGameRenderer implements Renderer{
 @Override
 public void onDrawFrame(GL10 gl) {
 }

...

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 //TODO Add texture loading for background image
 }
}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 85

With the identity is loaded, you can set up glOrthof(), which will set up an orthogonal,
two-dimensional rendering of your scene. This call takes six parameters, each of which
defines a clipping plane.

The clipping planes indicate to the renderer where to stop rendering. In other words, any
images that fall outside of the clipping planes will not be picked up by glOrthof(). The
six clipping planes are the left, right, bottom, top, near, and far. These represent points
on the x, y, and z axes.

public class SFGameRenderer implements Renderer{
 @Override
 public void onDrawFrame(GL10 gl) {
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 //TODO Add texture loading for background image
 }
}

That is all you have to do to set up the rendering and projection of your game. Go ahead
and save SFGameRenderer; you will come back to onDrawFrame() later in this chapter.

With the onSurfaceCreated() and onSurfaceChanged() methods set up, you can go back
to that comment that you added to onSurfaceCreated(). In the next section of this
chapter, you are going to load your background image as a texture and call it from
onSurfaceCreated().

Loading an Image Using OpenGL
Images in OpenGL are loaded as textures. This is to say that an image, any image that
you want to display using OpenGL, is really treated as a texture that is being applied to a
3-D object.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 86

For this game, you are creating 2-D graphics, but OpenGL is going to treat them as 3-D
objects. Therefore, you will be building squares and triangles to map your images onto.
Once your images are mapped as textures onto these flat shapes, you can send them
into the renderer. It really sounds more complicated than it is.

Let’s start by copying a file into Eclipse to use as the background. The image that I used
is called backgroundstars.png and is shown in Figure 4–2.

Figure 4–2. The background image

If you are using a Motorola Droid model phone, there’s is a bug in OpenGL that extends
back to at least the Froyo version of Android. Luckily though, there is a workaround.

I personally have a Droid X and have seen this bug for myself. If you load an image as a
texture using OpenGL on a Droid, you may end up seeing nothing but a white box where
the image should be. The bug has to do with the size and placement of the image in
your Android package.

For most normal installations of Android, the images can be placed in any of the
res/drawable-[density] folders and be any dimension. In the last chapter, you placed a
few images of differing size dimensions into the res/drawable-hdpi folder, and
hopefully, you had no problems displaying them.

To avoid this dreaded Droid white box bug follow these two steps. First, create a new
drawable folder under your res called drawable-nopi. Older versions of Android came
with this folder installed; I can only assume that something on the Droid phones is still
referencing it. All of the images that you want to display using OpenGL should now be
placed in this new res/drawable-nopi folder.

Second, you must ensure that your images are a derivative of 256 ⋅ 256 (a power of 2).
The image for the background (see Figure 4–1) is 256 ⋅ 256 pixels. However, I have
found that 128 ⋅ 128 and 64 ⋅ 64 work as well. Hopefully, this bug will be fixed in future
versions of the Droid phones or the Android software.

That being said, take the image that you are using for your background, and copy it into
your respective res/drawable folder. You can now reference it using the R.java file.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 87

Now, create a new class, SFBackground. This new class file will be called to load the
image as a texture and return it back to the renderer.

package com.proandroidgames;

public class SFBackground {

}

You are going to call the SFBackground.loadTexture() method from the
SFGameRenderer to load up the background to OpenGL. But first you need to build the
constructor. The constructor for the SFBackground class is going to set up all of the
variables that you will need to interact with OpenGL.

You will need an array to hold the mapping coordinates of your texture, an array to hold
the coordinates of your vertices, and an array to hold the indices of the vertices. You will
also be creating an array of pointers to your textures.

NOTE: In this class, you will only be loading one texture into the class, but in future chapters, you
will be loading multiple textures into one class. Therefore, in an effort to make the code as

generic as possible, you will use the same structure for most of the texture loading classes.

package com.proandroidgames;

public class SFBackground {
 private int[] textures = new int[1];

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };
 private float texture[] = {
 0.0f, 0.0f,
 1.0f, 0f,
 1, 1.0f,
 0f, 1f,
 };
 private byte indices[] = {
 0,1,2,
 0,2,3,
 };
 public SFBackground() {

 }
}

In the next section you will add the arrays that will build polygons to hold your texture.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 88

Vertices, Textures, and Indices . . . Oh My!
Let’s briefly discuss what the vertex, texture, and index values represent. The
vertices[] array lists a series of points. Each row here represents the x, y, and z value
of a corner of a square. In this case, you are making a square that is the full size of the
screen. This will ensure that the image covers the entire background area.

The texture[] array represents where the corners of the image (i.e., texture) will line up
with the corners of the square you created. Again, in this case, you want the texture to
cover the entire square, which in turn is covering the entire background. The textures[]
array hold a pointer to each texture that you are loading onto your shape. You are hard
coding this to 1, because you will be loading only one background image onto this
shape.

Finally, the indices[] array holds the definition for the face of the square. The face of
the square is broken into two triangles. The values in this array are the corners of those
triangles in counter-clockwise order. Notice that one line (two points) overlap (0 and 2).
Figure 4–3 illustrates this concept.

Figure 4–3. Labeled index points

Now, create some buffers that we can hold these arrays in. The buffers can then be
loaded into OpenGL.

package com.proandroidgames;

import java.nio.ByteBuffer;
import java.nio.FloatBuffer;

public class SFBackground {

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;

 private int[] textures = new int[1];

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,

3

0 1

2

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 89

 };
 private float texture[] = {
 0.0f, 0.0f,
 1.0f, 0.0f,
 1.0, 1.0f,
 0.0f, 1.of,
 };
 private byte indices[] = {
 0,1,2,
 0,2,3,
 };
 public SFBackground() {

 }

}

In the constructor for the SFBackground class, you are going to populate the appropriate
buffers with the appropriate arrays.

package com.proandroidgames;

import java.nio.ByteOrder;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;

public class SFBackground {

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;

 private int[] textures = new int[1];

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };
 private float texture[] = {
 0.0f, 0.0f,
 1.0f, 0.0f,
 1.0, 1.0f,
 0.0f, 1.of,
 };
 private byte indices[] = {
 0,1,2,
 0,2,3,
 };

 public SFBackground() {

 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 90

 vertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);

 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);

 }

}

The code here should be self-explanatory. You are creating a ByteBuffer with the values
of the vertex and texture arrays. Notice that the number of values in each of these arrays
is multiplied by 4 to allocate space in the ByteBuffer. This is because the values in the
arrays are floats, and floats are four times the size of bytes. The index array is integers
and it can be loaded directly into the indexBuffer.

Creating the loadTexture() Method
Next, you need to create the loadTexture() method. The loadTexture() method will
take in an image pointer and then load the image into a stream. The stream will then be
loaded as a texture into OpenGL. During the drawing process you will map this texture
onto the vertices.

package com.proandroidgames;

import javax.microedition.khronos.opengles.GL10;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;
import java.io.IOException;
import java.io.InputStream;

public class SFBackground {

...

 public SFBackground() {

...

 }
 public void loadTexture(GL10 gl,int texture, Context context) {

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 91

 InputStream imagestream = context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {

 bitmap = BitmapFactory.decodeStream(imagestream);

 }catch(Exception e){

 }finally {
 //Always clear and close
 try {
 imagestream.close();
 imagestream = null;
 } catch (IOException e) {
 }
 }

 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
GL10.GL_REPEAT);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
GL10.GL_REPEAT);

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

 bitmap.recycle();
 }

}

The first part of loadTexture() is pretty easy. It takes in the pointer and loads the
resulting image into a bitmap stream. The stream is then closed.

The second part of loadTexture(), however, is fairly heavy in OpenGL. The first line
generates a texture pointer, which is structured like a dictionary.

gl.glGenTextures(1, textures, 0);

The first parameter is the number of texture names that you need generated. When it
comes time to bind the textures to a set of vertices, you will call them out of OpenGL by
name. Here, you are only loading one texture, so you only need one texture name
generated. The second parameter is the array of ints that you created to hold the
number for each texture. Again, there is only one value in this array right now. Finally,
the last parameter holds the offset for the pointer into the array. Since your array is zero-
based, the offset is 0.

The second line binds the texture into OpenGL.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 92

gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

If you were loading two textures together, you would have two each of these first two
lines: one to load the first image and one to load the second.

The next two lines deal with how OpenGL is to map the texture onto the vertices. You
want the mapping to take place quickly but produce sharpened pixels.

gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_NEAREST);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR);

The following two lines are important. Star Fighter is a scrolling shooter game, so the
background should continuously scroll to give the illusion that the playable character
is flying through space. Obviously, the image you are using for the background is
finite. Therefore, to create the illusion that your player is flying through the endless
vastness of space, the image must repeat ad infinitum. Luckily, OpenGL can handle this
for you.

gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S, GL10.GL_REPEAT);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T, GL10.GL_REPEAT);

In these two lines, you are telling OpenGL to continuously repeat your background
texture in the S and T directions. Right now, your vertices are the size of the screen, and
the initial background texture will be mapped directly on top of it. When it comes time to
scroll the background (in the next section of this chapter), you will actually be moving
the texture on the vertices rather than moving the vertices. By moving the textures, you
allow OpenGL to repeat the texture for you, to cover vertex that is exposed when you
move the texture. It is a very handy feature of OpenGL, especially in game development.

Finally, in the last two line of the loadTexture() method, you associate the bitmap input
stream that you created with the first texture. The bitmap stream is then recycled.

GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
bitmap.recycle();

Mapping Your Texture
The last piece of code you need to write to complete your SFBackground class is the
method that will draw the texture onto the vertices.

package com.proandroidgames;

import javax.microedition.khronos.opengles.GL10;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;
import java.io.IOException;
import java.io.InputStream;

public class SFBackground {

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 93

...

 public void draw(GL10 gl) {

 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,
GL10.GL_UNSIGNED_BYTE, indexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);

 }

 public SFBackground() {

...

}
 public void loadTexture(GL10 gl,int texture, Context context) {
 InputStream imagestream = context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {

 bitmap = BitmapFactory.decodeStream(imagestream);

 }catch(Exception e){

 }finally {

 try {
 imagestream.close();
 imagestream = null;
 } catch (IOException e) {
 }
 }

 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 94

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
GL10.GL_REPEAT);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
GL10.GL_REPEAT);

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

 bitmap.recycle();
 }

}

The draw() method is going to be called every time you want to draw the background,
as opposed to the loadTexture() method, which will be called only when you initialize
the game.

This first line of this method binds the texture to your target. Think of it as putting a
bullet in the chamber of a gun; the texture is loaded up and ready to be used.

gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

The next three lines in the draw() method tell OpenGL to enable culling and basically
ignore any vertices that are not on the front face. Since you are rendering the game in a
2-D orthogonal view, you don’t want OpenGL to spend precious processor time dealing
with vertices that the player will never see. Right now, all of your vertices are front
facing, but this is good code to have in there anyway.

gl.glFrontFace(GL10.GL_CCW);
gl.glEnable(GL10.GL_CULL_FACE);
gl.glCullFace(GL10.GL_BACK);

The next four lines enable the vertex and texture states and loads the vertices and
texture buffers into OpenGL.

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

Finally, the texture is drawn onto the vertices, and all of the states that were enabled are
disabled.

gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_BYTE,
indexBuffer);
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
gl.glDisable(GL10.GL_CULL_FACE);

Your SFBackground class is now complete and ready to be called by the SFGameRenderer.
Save the SFBackground.java file and reopen SFGameRenderer.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 95

Calling loadTexture() and draw()
You need to add in the appropriate calls to both the loadTexture() and the draw()
methods of SFBackground. The loadTexture() method will be called from the
onSurfaceCreated() method of SFGameRenderer.

Because the loadTexture() method of SFBackground takes an image pointer as a
parameter, you need to add a new constant to the SFEngine. Open SFEngine and add the
following constant to point to the backgroundstars.png file that you added to the
drawable folder.

package com.proandroidgames;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ImageButton;
package com.proandroidgames;

import android.content.Context;
import android.content.Intent;
import android.view.View;

public class SFEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int MENU_BUTTON_ALPHA = 0;
 public static final boolean HAPTIC_BUTTON_FEEDBACK = true;
 public static final int SPLASH_SCREEN_MUSIC = R.raw.warfieldedit;
 public static final int R_VOLUME = 100;
 public static final int L_VOLUME = 100;
 public static final boolean LOOP_BACKGROUND_MUSIC = true;
 public static Context context;
 public static Thread musicThread;
 public static final int BACKGROUND_LAYER_ONE = R.drawable.backgroundstars;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 Intent bgmusic = new Intent(context, sfmusic.class);
 context.stopService(bgmusic);
 musicThread.stop();
 return true;
 }catch(Exception e){
 return false;
 }

 }

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 96

You will now call the loadTexture() method of the SFBackground class and pass it this
constant. This will load the background stars image as a texture into OpenGL.

Save SFEngine, and go back to SFGameRenderer. You will now instantiate a new
SFBackground and call its loadTexture() method from onSurfaceCreated(). It is best to
instantiate the new SFBackground where it can be accessed throughout the class. You
will be making several calls to SFBackground in this class.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

 private SFBackground background = new SFBackground();

 @Override
 public void onDrawFrame(GL10 gl) {

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);

 }

}

At this point, if you called the draw() method of SFBackground you would have a static
image of the star field. However, a static background is not what you are going for in this
game. Star Fighter has the main playable character racing through space to fight the

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 97

enemy, and to simulate that race through space, the background needs to scroll. In the
next section, you are going create a method that will scroll the background as though
you are flying through the star field.

Scrolling the Background
Compared to what you have accomplished thus far in this chapter, writing the method to
scroll the background is going to be very easy. In SFGameRenderer, create a new method
named scrollBackground1().

You also need a new float named bgScroll1. This float will keep track of how much the
background has scrolled when you are not in the method. Since you need the value to
persist outside of the scrollBackground1() method, create it where the class has
access to it.

NOTE: You are naming this method scrollBackground1() because, later in this chapter, you

will be creating a scrollBackground2() that will scroll a second layer of the background.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();

 private float bgScroll1;

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub
 }

 private void scrollBackground1(GL10 gl){

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub

 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 98

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);

 }

}

The first thing you are going to do in this method is test to ensure that the value of
bgScroll1 will not exceed the largest possible value for a float and throw an exception.
The chances of bgScroll1 going that high are very slim, especially when you see what
we will be incrementing it by. However, it is always better to play things safe.

Test that bgScroll1 is not equal to the largest size for a float. If bgScroll1 is the
maximum size for a float, set it to zero.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();

 private float bgScroll1;

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub
 }

 private void scrollBackground1(GL10 gl){
 if (bgScroll1 == Float.MAX_VALUE){
 bgScroll1 = 0f;
 }

 }

...

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 99

Earlier in this chapter, we discussed two of the matrix modes of OpenGL: texture and
projection. You have to put OpenGL in texture matrix mode to scroll the texture on the
vertices.

NOTE: Remember you are actually moving the texture on the vertices here. You are not moving

the vertices.

Because you are not moving the vertices, you need to ensure that they are in the correct
place and that nothing moved unintentionally. Why? This is one of the tricky parts of
learning OpenGL.

OpenGL Matrices
Setting OpenGL to texture matrix mode, or even model view matrix mode (used to move
and scale the vertices) will give you access to all of the textures and all of the vertices
respectively in OpenGL at that time. This means that when you put OpenGL into texture
matrix mode and move a texture 1 unit on the x axis, you are actually moving all of the
textures you have within OpenGL at that moment 1 unit on the x axis.

This situation could be problematic in a game where you could have any number of
items all moving and scaling at different rates and directions at any given time. However,
if OpenGL works with all of the textures at once and all of the vertices at once, how do
you move individual items separately?

This may sound confusing right now, but there is a logical way to work around the
situation.

All of the matrix modes are kept on a stack. The process is to push the mode off of the
stack (in this case, texture matrix mode). Once the mode is off of the stack, you move all
of the textures and redraw only the textures that you want effected by that particular
movement. You then pop the texture back on the stack and repeat the process for the
next texture that you want to move.

You have to be careful to reset the matrix mode back to its default state before you
begin working with it, or it will have the last value you set it to. For example, let’s say you
have texture A and texture B. You want to move texture A 1 unit on the x axis and 1 unit
on the y axis. You want to move texture B just 1 unit on the x axis. You push the texture
matrix off of the stack and move it 1 unit each on the x and y axes. You then draw
texture A and pop the matrix back on the stack. That was easy.

Now, you move on to texture B. You push the matrix off the stack and move the matrix 1
unit on the x axis. However, the matrix is already set to (1,1) because the last operation
that you did on texture A was to move the texture matrix 1 unit on each axis. So you
inadvertently end up moving texture B 2 units on the x axis and 1 unit on the y axis.
Therefore, you need to reset the matrix to its default state after you push it off the stack
to make sure that you start with the default units. Resetting the matrix is accomplished
using the glLoadIdentity() call.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 100

The OpenGL operation that you will be performing to scroll your background is
glTranslatef(). The glTranslatef() method takes three parameters, the values x, y,
and z. It will adjust the current matrix according to the values provided. You are going to
store the value that you are scrolling your background by in a constant. Add the
following constant to SFEngine.

public static float SCROLL_BACKGROUND_1 = .002f;

Save SFEngine and move back to SFGameRenderer. Your first step in scrolling the
background texture is to push the model matrix mode off the stack and reset it, just in
case any moving there done in the future affects the model mode. Then you are going to
push the texture matrix off the stack and do your scrolling.

Add the following lines to the scrollBackground1() method:

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 gl.glTranslatef(0f, 0f, 0f);
package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();

 private float bgScroll1;

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub
 }

 private void scrollBackground1(GL10 gl){
 if (bgScroll1 == Float.MAX_VALUE){
 bgScroll1 = 0f;
 }
 /*This code just resets the scale and translate of the
 Model matrix mode, we are not moving it*/
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 gl.glTranslatef(0f, 0f, 0f);
 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub

 gl.glViewport(0, 0, width,height);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 101

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);

 }

}

Again, this code is more housekeeping than anything at this point.

Transforming the Texture
Now, you are going to load up the texture matrix mode and perform your scrolling. You
are going to adjust the y axis by the value in bgScroll1. The result of this is that the
background will move along the y axis by the amount in bgScroll1.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private float bgScroll1;

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub

 }
 private void scrollBackground1(GL10 gl){
 if (bgScroll1 == Float.MAX_VALUE){
 bgScroll1 = 0f;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 102

 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 gl.glTranslatef(0f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f, bgScroll1, 0.0f); //scrolling the texture

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub

 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);

 }

}

The final things that you need to do in scrollBackground1() is to draw the background
by calling the draw() method of the SFBackground, pop the matrix back on the stack, and
increment bgScroll1.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private float bgScroll1;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 103

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub

 }
 private void scrollBackground1(GL10 gl){
 if (bgScroll1 == Float.MAX_VALUE){
 bgScroll1 = 0f;
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 gl.glTranslatef(0f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f, bgScroll1, 0.0f);

 background.draw(gl);
 gl.glPopMatrix();
 bgScroll1 += SFEngine.SCROLL_BACKGROUND_1;
 gl.glLoadIdentity();

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub

 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);

 }

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 104

}

That small method is all you need to be able to scroll the background of your game. Just
to recap what the method does:

� It resets the model matrix to make sure it has not been inadvertently
moved.

� It loads the texture matrix and moves it along the y axis by the value in
SCROLL_BACKGROUND_1.

� It draws the background and pops the matrix back on the stack.

This scrolling will give you a nice moving star field that your player’s ship can fly through.
Try running your game now, and take a look at how the background scrolls. It is also a
good time to do some debugging if there are any problems, before you move on to more
complicated code. However, especially by today’s gaming standards, the current
background is fairly plain. You need to do something to give it a little oomph.

In the next section, you are going to add a second layer to the background. This will give
the background of your game some depth, even for a 2-D game. If you have seen any
two-layer side-scrolling game, like Super Mario Brothers, you should have noticed that
the two layers scroll at different rates. You will give your game this two-layer, two-speed
scrolling effect in the following section.

Adding a Second Layer
At this point, you have initialized OpenGL, loaded your background image as a texture,
and created a method to scroll that texture down the background of the game. Now, it is
time to create a second layer of the background. This second layer is going to be very
easy to create, especially in comparison to the benefits that you will get back from it in
the look of your game.

Much of the implementation of the second layer is actually already done; you just need
to create a new scrolling function, add a couple of new constants, and instantiate a new
copy of your SFBackground.

First, add a new image to your res/drawable folder. The image that I have used is called
debris.png.

NOTE: Because you have just done most of this work for the first layer of the background, I will

not be going into as much detail as in the previous section of this chapter.

With the image having been placed in your res/drawable folder, you can add two more
constants to the SFEngine. The first is a pointer to the new image file that can be passed
to the loadTexture() method of SFBackground, and the second a float that will hold the
scroll value for the second layer of the background. This float constant is the key part in
the second layer of the background because it will make the second layer scroll faster
than the first – giving your game some added depth.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 105

Add the following constants to your SFEngine.

public static float SCROLL_BACKGROUND_2 = .007f;
public static final int BACKGROUND_LAYER_TWO = R.drawable.debris;

Notice that the SCROLL_BACKGROUND_2 is set to a higher (decimal) value than
SCROLL_BACKGROUND_1. Having a larger value will mean that the y axis is incremented
greater and thus the second layer of the background will seem to move faster than the
first. If the second layer scrolls faster than the first, the illusion will be that the
background has depth.

Next, go back to your SFGameRenderer and instantiate a new copy of SFBackground called
background2. Notice that you are reusing the SFBackground class. This reuse is part of
the difference between game engine code and game-specific code. Because the
SFBackground was built to be general, to load and draw whatever image was passed to it
as a texture, it is part of the engine and can be reused for any of our background layers.

Because you are instantiating a new copy of SFBackground, you should also create a
new float called bgScroll2. This float will keep track of the cumulative scrolling factor of
the second layer of the background as opposed to the scrolling of the first layer of the
background, which is held in the bgScroll1 float.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();
 private float bgScroll1;
 private float bgScroll2;
 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub

 }
 private void scrollBackground1(GL10 gl){
 if (bgScroll1 == Float.MAX_VALUE){
 bgScroll1 = 0f;
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 gl.glTranslatef(0f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f, bgScroll1, 0.0f);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 106

 background.draw(gl);
 gl.glPopMatrix();
 bgScroll1 += SFEngine.SCROLL_BACKGROUND_1;
 gl.glLoadIdentity();

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub

 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);

 }

}

Loading a Second Texture
Now that you have the copy of SFBackground instantiated for the second layer, you can
load the texture for it. You are going to call the same loadTexture() method that you
called for the first layer of the background. You will make the call the loadTexture() for
the second layer of the background right after you make the call for the first in the
onSurfaceCreated() method of the SFGameRenderer.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 107

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();
 private float bgScroll1;
 private float bgScroll2;

...

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);

 background2.loadTexture(gl,SFEngine.BACKGROUND_LAYER_TWO,
SFEngine.context);

 }

}

Be sure that when you call the loadTexture() method for the second layer of the
background that you pass it the correct image pointer. Earlier, you created a new
constant in the SFEngine called BACKGROUND_LAYER_TWO with a pointer to a new image;
this is the pointer that you should be passing to the loadTexture() method of
background2.

You now have a new layer of the background instantiated, and you are loading a texture
into it. Next, you need to write a new method to control the scrolling.

Scrolling Layer Two
You are going to do something a little different in this scrolling method than in the
scrolling method for the first layer of the background. Because the second layer of the
background is just smaller images that should not dominate the overall look of the
background, you are going to resize the vertices in the model matrix view so that the
second-layer texture’s vertices are half the width of the screen. Then, you will move the
vertices along the x axis, so the image appears to be half off the screen to the right-
hand side.

Create a new method in your SFGameRenderer called scrollBackground2(). You should
also insert the same test that you had in scrollBackground1() to make sure that
bgScroll2 has not exceeded the maximum size of a float.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 108

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();
 private float bgScroll1;
 private float bgScroll2;

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub

 }
 private void scrollBackground1(GL10 gl){
 if (bgScroll1 == Float.MAX_VALUE){
 bgScroll1 = 0f;
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 gl.glTranslatef(0f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,bgScroll1, 0.0f);

 background.draw(gl);
 gl.glPopMatrix();
 bgScroll1 += SFEngine.SCROLL_BACKGROUND_1;
 gl.glLoadIdentity();

 }

 private void scrollBackground2(GL10 gl){
 if (bgScroll2 == Float.MAX_VALUE){
 bgScroll2 = 0f;
 }

 }

 ...

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 109

Working with the Matrices
Here is where the code for scrollBackground2() is going to change a little. In
scrollBackground1(), you added some housekeeping code to make sure that the model
matrix had not changed and reset it to a default value. In scrollBackground2(), you are
going to perform two transformations on the model matrix. First, you are going to scale
the model matrix on the x axis so that it is half the size of the screen. Then you are going
to move the model matrix on the x axis so that it is half off the right hand side of the
screen.

Because you are performing these actions on the model matrix and not the texture
matrix, you will be transforming the vertices and not the texture applied to it. That is,
while visually you will see the texture shrink and move to the side of the screen, you are
actually shrinking and moving the vertices, not the texture.

You will set the x value of the glScale() method to .5 to shrink the vertices by half on
the x axis. Be careful to understand that setting the axis to .5 does not mean you want
to add .5 units to it. All of the values are multiplied. Therefore, by setting the x of
glScale() to .5, you are telling OpenGL to multiple the current value of x by .5, thus (in
your case) shrinking the x axis by half.

 package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();
 private float bgScroll1;
 private float bgScroll2;

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub

 }
 private void scrollBackground1(GL10 gl){
 if (bgScroll1 == Float.MAX_VALUE){
 bgScroll1 = 0f;
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 gl.glTranslatef(0f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,bgScroll1, 0.0f);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 110

 background.draw(gl);
 gl.glPopMatrix();
 bgScroll1 += SFEngine.SCROLL_BACKGROUND_1;
 gl.glLoadIdentity();

 }
 private void scrollBackground2(GL10 gl){
 if (bgScroll2 == Float.MAX_VALUE){
 bgScroll2 = 0f;
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.5f, 1f, 1f);
 gl.glTranslatef(1.5f, 0f, 0f);

 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub

 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);
 background2.loadTexture(gl,SFEngine.BACKGROUND_LAYER_TWO,
SFEngine.context);

 }

}

Notice the difference between scrollBackground1() and scrollBackground2(). Because
scrollBackground2() works directly with the model matrix, you want to make sure that
the you have the code in place in scrollBackground1() to reset this. Otherwise, your

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 111

star field background will end up being transformed by half and pushed to the right-
hand side of the screen.

Finishing the scrollBackground2() Method
The remainder of the scrollBackground2() method is the same as scrollBackground1().
You need to move the background texture along the y axis by the value in bgScroll2
and then increment that value by SCROLL_BACKGROUND_2.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();
 private float bgScroll1;
 private float bgScroll2;

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub

 }
 private void scrollBackground1(GL10 gl){
 if (bgScroll1 == Float.MAX_VALUE){
 bgScroll1 = 0f;
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 gl.glTranslatef(0f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,bgScroll1, 0.0f);

 background.draw(gl);
 gl.glPopMatrix();
 bgScroll1 += SFEngine.SCROLL_BACKGROUND_1;
 gl.glLoadIdentity();

 }
 private void scrollBackground2(GL10 gl){
 if (bgScroll2 == Float.MAX_VALUE){
 bgScroll2 = 0f;
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 112

 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.5f, 1f, 1f);
 gl.glTranslatef(1.5f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,bgScroll2, 0.0f);

 background2.draw(gl);
 gl.glPopMatrix();
 bgScroll2 += SFEngine.SCROLL_BACKGROUND_2;
 gl.glLoadIdentity();
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub

 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);
 background2.loadTexture(gl,SFEngine.BACKGROUND_LAYER_TWO,
SFEngine.context);

 }

}

You have done a lot of coding thus far in this chapter, and you have a fairly complete
environment in which your player can experience the game. However, one very
important part of SFGameRenderer is left to code; the onDrawFrame() method. This
method will not only control the scrolling (and ultimately the drawing) of your
backgrounds, it will also control the frame rate at which your game runs.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 113

Running at 60 Frames per Second
The holy grail of game run speeds is 60 frames per second. Your game should run at, or
as close as possible to, 60 frames per second to have a smooth game play experience.
In this section of the chapter, you are going to write a quick thread pausing routine that
will ensure your games runs around 60 frames per second.

The good thing about using a GLSurfaceView renderer as the main launching point of
your game (SFGameRenderer) is that it is already threaded for you. Unless you explicitly
set it otherwise, the onDrawFrame() method is called continuously. You do not need to
worry about manually setting up any extra threads for the game execution or calling the
game methods in a loop. When you set up the SFGameRenderer as the main view of the
activity, a threading action is executed that will continuously call the onDrawFrame()
method of SFGameRenderer.

Therefore, you need to marshal how this method runs in order to limit it to running just
60 times in one second.

You can put a quick pausing routine in the onDrawFrame() that will put the thread to
sleep for a specific amount of time. The amount of time that you want to put the thread
to sleep will be one second divided by 60. You will store this value in a constant in the
SFEngine.

public class SFEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int MENU_BUTTON_ALPHA = 0;
 public static final boolean HAPTIC_BUTTON_FEEDBACK = true;
 public static final int SPLASH_SCREEN_MUSIC = R.raw.warfieldedit;
 public static final int R_VOLUME = 100;
 public static final int L_VOLUME = 100;
 public static final boolean LOOP_BACKGROUND_MUSIC = true;
 public static final int GAME_THREAD_FPS_SLEEP = (1000/60);
 public static Context context;
 public static Thread musicThread;
 public static Display display;
 public static float SCROLL_BACKGROUND_1 = .002f;
 public static float SCROLL_BACKGROUND_2 = .007f;
 public static final int BACKGROUND_LAYER_ONE = R.drawable.backgroundstars;
 public static final int BACKGROUND_LAYER_TWO = R.drawable.debris;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 Intent bgmusic = new Intent(context, sfmusic.class);
 context.stopService(bgmusic);
 musicThread.stop();

 return true;
 }catch(Exception e){
 return false;
 }

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 114

 }

}

TIP: In Chapter 5, you will have the option of modifying this formula slightly. As you add more
objects to it, you will want to take into account the amount of time OpenGL needs to render your

game. For right now, this formula should be just fine.

Pausing the Game Loop
Now that the constant is created, you can set up the pausing routine in the
onDrawFrame() method. At the top of the method, insert Thread.sleep().

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();
 private float bgScroll1;
 private float bgScroll2;

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub
 try {
 Thread.sleep(SFEngine.GAME_THREAD_FPS_SLEEP);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }
 private void scrollBackground1(GL10 gl){
 if (bgScroll1 == Float.MAX_VALUE){
 bgScroll1 = 0f;
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 gl.glTranslatef(0f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,bgScroll1, 0.0f);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 115

 background.draw(gl);
 gl.glPopMatrix();
 bgScroll1 += SFEngine.SCROLL_BACKGROUND_1;
 gl.glLoadIdentity();

 }
 private void scrollBackground2(GL10 gl){
 if (bgScroll2 == Float.MAX_VALUE){
 bgScroll2 = 0f;
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.5f, 1f, 1f);
 gl.glTranslatef(1.5f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,bgScroll2, 0.0f);

 background2.draw(gl);
 gl.glPopMatrix();
 bgScroll2 += SFEngine.SCROLL_BACKGROUND_2;
 gl.glLoadIdentity();
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub

 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);
 background2.loadTexture(gl,SFEngine.BACKGROUND_LAYER_TWO,
SFEngine.context);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 116

 }

}

Now, anything that you place after the try. . .catch containing the Thread.sleep() will
only run 60 times per second. You are going to use this onDrawFrame() with the pausing
routine as your game loop. Everything that you need to call to place into your game you
will do from here.

Clearing the OpenGL Buffers
The first step in your game loop is to clear the OpenGL buffers. This will prepare
OpenGL for all of the rendering and transforming that you are about to do.

@Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub
 try {
 Thread.sleep(SFEngine.GAME_THREAD_FPS_SLEEP);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 }

Once the buffers have been cleared, you can call the two scrolling methods that you
created in the last section of this chapter. These two methods will move and draw the
two layers of the background appropriately.

@Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub
 try {
 Thread.sleep(SFEngine.GAME_THREAD_FPS_SLEEP);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 scrollBackground1(gl);
 scrollBackground2(gl);

 }

Finally, you are going to call the transparency blending function of OpenGL. This
OpenGL function will make sure everything that you are supposed to be able to see
through is transparent. Without this function, you will not see through the vertices
around your texture.

@Override
 public void onDrawFrame(GL10 gl) {

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 117

 // TODO Auto-generated method stub
 try {
 Thread.sleep(SFEngine.GAME_THREAD_FPS_SLEEP);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 scrollBackground1(gl);
 scrollBackground2(gl);

 //All other game drawing will be called here

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);
 }

Congratulations! You just successfully used OpenGL to create a two-layer, dual-speed
scrolling background. Your last step before you can run your game is to wire up the
Start button from the main menu to call the SFGame activity.

Modify the Main Menu
Open the SFMainMenu file that you created in the last chapter. In Chapter 3, you created
an onClickListener() for the start button. You are going to add a new intent to this
method for the SFGame activity. Adding this activity to the onClickListener() will start
your game activity when the player clicks (or touches) the Start button on the main
menu.

start.setOnClickListener(new OnClickListener(){
 @Override
 public void onClick(View v) {
 /** Start Game!!!! */
 Intent game = new Intent(getApplicationContext(),SFGame.class);
 SFMainMenu.this.startActivity(game);

 }
});

You can compile and run your code. You should see the splash screen fade into the
main menu. If you click the Start button on the main menu, you should be launched into
your game where you will see the two layers of your background scroll by at different
speeds to the sounds of your background music.

Click the back menu button on your device to return to the main menu, and click the exit
button to exit the game and kill the threads.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 4: Drawing The Environment 118

CAUTION: Keep in mind that you have not yet put in some important housekeeping code. For
example, if you were to just leave the focus of the game, the threads would continue to run (so
too the music). You will add in code to take care of this later in this book. For now, when you are

testing your game, make sure you kill the threads by clicking the exit button.

Summary
In this chapter, you learned several key skills that a game developer needs to add
backgrounds to your games. Specifically, you should now have a basic understanding of
the following:

� Creating a GLSurface instance

� Creating a renderer

� Initializing OpenGL

� Loading a texture from an image

� Modifying the OpenGL matrices

� Pushing and popping a matrix

� Using glScale() and glTranslatef() to move textures and vertices

� Marshalling a renderer using Thread.sleep()

In the next chapter, you will add your first playable character to the game.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

119

 Chapter

Creating Your Character
To this point in the book, you have done quite a bit of developing, and you have learned
a lot about OpenGL and Android—so much that you should be fairly comfortable now
with the slight differences between OpenGL and any of the other API tools you may
have used in the past.

You have not written an exorbitant amount of code thus far. But what you have written
has made a great start to your game and a big visual impact. You have accomplished
developing a two-layer dual-speed scrolling background, background music, splash
screen, and main menu system. All of these items have one thing in common, as far as a
playable game is concerned: they are pretty boring.

That is to say, a gamer is not going to buy your game to watch a fancy two-layer
background scroll by. The gamer needs some action to control. This is what Chapter 5:
Create Your Character is all about.

In this chapter, you will create your playable character. By the end of this chapter, you
will have an animated character that the player can move on the screen. The first section
of this chapter will introduce you to a staple of 2-D game development—sprite
animation. Then, using OpenGL ES, you will load different sprites from a full sprite sheet
to create the illusion of an animated character. You will learn how to load different
sprites at key points in the action to make your character look like it is banking in flight.

Animating Sprites
One of the most time-honored tools in the 2-D game developer’s belt is sprite animation.
Think back to any of your favorite 2-D games, chances are the animation of any of the
characters was achieved using sprite animation.

A sprite is technically any graphic element in a 2-D game. Your main playable character
is, therefore, a sprite by definition. Sprites, by themselves, are just static images that sit
on the screen and do not change. Sprite animation is the process that you are going to
use to give your character some life, even if that character is just a spaceship.

5

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 120

CAUTION: Do not confuse animation with movement. Moving a sprite (image, texture, vertex, or
model) around the screen is not the same as animating a sprite; the two concepts and skills are

mutually exclusive.

Sprite animation is accomplished using a flip-book style effect. Think of almost any 2-D
game, for example, Mario Brothers. Mario Brothers is one of the best examples of 2-D
platform gaming that incorporates sprite animation. In the game, you move Mario left or
right through a side-scrolling environment. Mario walks, and sometimes runs, in the
direction that you move him. His legs are clearly animated in a walking sequence.

This walking animation is actually made up of a series of still pictures. Each picture
depicts a different point in the walking action. When the player moves the character to
the left or to the right, the different images are swapped out, giving the illusion that
Mario is walking.

In the game Star Fighter, you are going to employ the same method to create some
animation for your main character. The main playable character in Star Fighter is a
spaceship; therefore, it will not require walking animation. Spaceships do require some
animating though. In this chapter, you will create animations for banking to the right and
banking to the left as the player is flying. In future chapters, you will create animations
for exploding in a collision.

The great part about sprite animation is that you learned all of the skills that are needed
to implement it in the previous chapter. That is, you learned how to load a texture into
OpenGL. More importantly, you learned to map a texture onto a set of vertices. The key
to sprite animation is how the texture is mapped onto your vertices.

The textures used in implementing sprite animation are not technically separate images.
The time and power that would be needed to load and map a new texture 60 times per
second—if you could even do it—would far exceed the capabilities of an Android
device. Rather, you will use something called a sprite sheet.

A sprite sheet is a single image that contains on it all of the separate images required to
perform sprite animation. Figure 5–1 shows the sprite sheet for the main playable ship.

Figure 5–1. Main character sprite sheet

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 121

NOTE: The sprite sheet in Figure 5–1 is only partially shown. The actual image as it is loaded
into OpenGL is 512 × 512. The bottom half of the image, which is nothing but transparency, has

been cropped for better display in the book.

How do you animate one image that is full of smaller ones? It is actually easier than you
may think. You will load the image as one texture, but you will only be displaying the
portion of the texture that has the image that you want to show the player. When you
want to animate the image, you simply use glTranslateF() to move to the next part of
the image that you want to display.

Don’t worry if this concept doesn’t quite make sense yet; you are going to put it into
action in the next sections of this chapter. The first step, however, is to create a class
that will handle drawing and loading your playable character.

NOTE: You may be wondering why the ships in the sprite sheet are facing down rather than up;
especially since the playable character will be at the bottom of the screen flying up toward the

top. This is because OpenGL renders all bitmaps from the last line to the first. Therefore, when

OpenGL renders this sprite sheet it will appear on the screen as in Figure 5–2.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 122

Figure 5–2. How the sprite sheet will look on screen

Yes, you could use draw the sprite sheet the correct way and then use OpenGL to rotate
the texture to the correct position. However, it is easy enough to invert the sprite sheet
using any imaging software, and that way, you save OpenGL the cycles and trouble of
inverting it for you.

Loading Your Character
In the previous chapter, you created a class that loaded a texture for a background
image and then drew that image when called. The mechanics that you used to create
that class will be the same as those that you will need to load up and draw your main
character. You will make small adjustments to allow for the use of a sprite sheet, but
otherwise, this code should look familiar.

Start by creating a new class in your project package named SFGoodGuy:

package com.proandroidgames;

public class SFGoodGuy {

}

In the SFGoodGuy() class, stub out a constructor, a draw() method, and a loadTexture()
method.

TIP: Remember, you can use the alt + shift + O shortcut in Eclipse to expose any missing

imports that you may need.

package com.proandroidgames;

public class SFGoodGuy {

 public SFGoodGuy() {

 }
 public void draw(GL10 gl) {

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 123

 }
 public void loadTexture(GL10 gl,int texture, Context context) {

 }
}

Next, establish the buffers that you will use in the class. Again, this should look identical
to what you did in the previous chapter when working with the background for the
game.

You can also add the code to create the vertices[] array. The vertices will be the same
as those used in for the background.

package com.proandroidgames;

public class SFGoodGuy {

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;
 private int[] textures = new int[1];

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 public SFGoodGuy() {

 }
 public void draw(GL10 gl) {

 }
 public void loadTexture(GL10 gl,int texture, Context context) {

 }
}

Now, create the array for the texture mapping.

Creating Texture Mapping Arrays
Texture mapping is where the SFGoodGuy() class will deviate from what you used when
loading the background. The texture that you will load into this class is a large sprite
sheet that contains five images of the main playable character. Your goal is to display
only one of these images at a time.

The key to understanding how to tell OpenGL the location of the image that you want to
display is how the images are configured on the sprite sheet. Take a look, again, at the
sprite sheet in Figure 5–1. Notice that the images are laid out evenly with four images in
the first row and one image in the second. With only four images in the first row of the

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 124

texture, and the entire texture being 1 unit long, you can surmise that you will only need
to display one-fourth of the entire texture to display one of the four images on the first
row.

This means that rather than mapping the full texture—from (0,0) to (1,1)—like you did for
the background, you only need to map a quarter of it—from (0,0) to (0,.25). You will only
be mapping, and thus displaying, the first image of the ship by only using .25, or one-
fourth, of the texture.

Create your texture array like this:

package com.proandroidgames;

public class SFGoodGuy {

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;
 private int[] textures = new int[1];

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 private float texture[] = {
 0.0f, 0.0f,
 0.25f, 0.0f,
 0.25f, 0.25f,
 0.0f, 0.25f,
 };

 public SFGoodGuy() {

 }
 public void draw(GL10 gl) {

 }
 public void loadTexture(GL10 gl,int texture, Context context) {

 }
}

The indices array, the draw() method, and the constructor are all the same as those
used in the SFBackground class:

package com.proandroidgames;

import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 125

import javax.microedition.khronos.opengles.GL10;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;

public class SFGoodGuy {

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;
 private int[] textures = new int[1];

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 private float texture[] = {
 0.0f, 0.0f,
 0.25f, 0.0f,
 0.25f, 0.25f,
 0.0f, 0.25f,
 };

 private byte indices[] = {
 0,1,2,
 0,2,3,
 };

 public SFGoodGuy() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);

 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }

 public void draw(GL10 gl) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 126

 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,
GL10.GL_UNSIGNED_BYTE, indexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }
 public void loadTexture(GL10 gl,int texture, Context context) {

 }
}

There is one more change that you need to make to the SFGoodGuy() class before it is
finished. In the class for loadTexture() method of the background, you set the
glTexParameterf to GL_REPEAT to enable the repeating of the texture as you moved it on
the vertices. This is not really necessary for the playable character; therefore, you are
going to set this parameter to GL_CLAMP_TO_EDGE.

Finish your SFGoodGuy() class with the following loadTexture() method:

...

 public void loadTexture(GL10 gl,int texture, Context context) {
 InputStream imagestream =
context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {

 bitmap = BitmapFactory.decodeStream(imagestream);

 }catch(Exception e){

 }finally {
 try {

 imagestream.close();
 imagestream = null;

 } catch (IOException e) {
 }
 }

 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 127

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
GL10.GL_REPEAT);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
GL10.GL_REPEAT);

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

 bitmap.recycle();

 }
}

You now have a functional class that will load your playable character texture as a sprite
sheet, display the first sprite in the sprite sheet, and not wrap the texture when it is
moved.

Loading a Texture onto Your Character
The next step to loading a playable character is to instantiate a copy of the SFGoodGuy()
and load a texture. Save and close the SFGoodGuy() class; you will not be needing to add
any more code to it right now.

Let’s add a few quick variables and constants to SFEngine. You will need these in your
game loop.

First, you will add a variable called playerFlightAction. This is going to be used to track
what action the player has taken so that you can respond appropriately in the game
loop.

package com.proandroidgames;

import android.content.Context;
import android.content.Intent;
import android.view.Display;
import android.view.View;

public class SFEngine {

...

 public static int playerFlightAction = 0;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 Intent bgmusic = new Intent(context, SFMusic.class);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 128

 context.stopService(bgmusic);
 musicThread.stop();
 return true;
 }catch(Exception e){
 return false;
 }

 }
}

Next, add in a constant that points to the sprite sheet from the last section of this
chapter.

package com.proandroidgames;

import android.content.Context;
import android.content.Intent;
import android.view.Display;
import android.view.View;

public class SFEngine {

...

 public static int playerFlightAction = 0;
 public static final int PLAYER_SHIP = R.drawable.good_sprite;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 Intent bgmusic = new Intent(context, SFMusic.class);
 context.stopService(bgmusic);
 musicThread.stop();
 return true;
 }catch(Exception e){
 return false;
 }

 }
}

The next three constants are going to indicate what action the player has taken. These
will be assigned to the playerFlightAction variable when the player tries to move the
character.

package com.proandroidgames;

import android.content.Context;
import android.content.Intent;
import android.view.Display;
import android.view.View;

public class SFEngine {

...

 public static int playerFlightAction = 0;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 129

 public static final int PLAYER_SHIP = R.drawable.good_sprite;
 public static final int PLAYER_BANK_LEFT_1 = 1;
 public static final int PLAYER_RELEASE = 3;
 public static final int PLAYER_BANK_RIGHT_1 = 4;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 Intent bgmusic = new Intent(context, SFMusic.class);
 context.stopService(bgmusic);
 musicThread.stop();
 return true;
 }catch(Exception e){
 return false;
 }

 }
}

Depending on how observant you are concerning the constants that you just added to
SFEngine, you may be wondering why PLAYER_BANK_LEFT_1 has a value of 1 and
PLAYER_RELEASE has a value of 3. These values are going to represent stages of your
sprite animation. On the sprite sheet, there are two stages in the left-banking animation
and two stages in the right-banking animation. However, in the code for the loop, you
are going to be able to infer that between PLAYER_BANK_LEFT_1 and PLAYER_RELEASE is a
PLAYER_BANK_LEFT_2 with a value of 2, and this constant will not have to be expressed in
the SFEngine. This concept will definitely make more sense when you see it in action
later in this section.

The next constant that you need will indicate how many loop iterations will equal one
frame of sprite animation. Remember, the big difference between the playable character
and the background of the game is that you are going to animate the character as it is
moved across the screen. Keeping track of this animation is going to be a tricky thing.
The game loop is running at 60 frames per second. If you ran a new frame of sprite
animation for every iteration of the loop, your animation would be over before the player
even had a chance to admire it. The constant PLAYER_FRAMES_BETWEEN_ANI will be set to
9, indicating that for every nine iterations of the main game loop, there will be one frame
of sprite animation drawn.

package com.proandroidgames;

import android.content.Context;
import android.content.Intent;
import android.view.Display;
import android.view.View;

public class SFEngine {

...

 public static int playerFlightAction = 0;
 public static final int PLAYER_SHIP = R.drawable.good_sprite;
 public static final int PLAYER_BANK_LEFT_1 = 1;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 130

 public static final int PLAYER_RELEASE = 3;
 public static final int PLAYER_BANK_RIGHT_1 = 4;
 public static final int PLAYER_FRAMES_BETWEEN_ANI = 9;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 Intent bgmusic = new Intent(context, SFMusic.class);
 context.stopService(bgmusic);
 musicThread.stop();
 return true;
 }catch(Exception e){
 return false;
 }

 }
}

Finally, add one more constant and one more variable. These will represent the speed at
which the player’s ship will move from left to right and the current position of the
player’s ship on the x axis.

package com.proandroidgames;

import android.content.Context;
import android.content.Intent;
import android.view.Display;
import android.view.View;

public class SFEngine {

...

 public static int playerFlightAction = 0;
 public static final int PLAYER_SHIP = R.drawable.good_sprite;
 public static final int PLAYER_BANK_LEFT_1 = 1;
 public static final int PLAYER_RELEASE = 3;
 public static final int PLAYER_BANK_RIGHT_1 = 4;
 public static final int PLAYER_FRAMES_BETWEEN_ANI = 9;
 public static final float PLAYER_BANK_SPEED = .1f;
 public static float playerBankPosX = 1.75f;

 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 Intent bgmusic = new Intent(context, SFMusic.class);
 context.stopService(bgmusic);
 musicThread.stop();
 return true;
 }catch(Exception e){
 return false;
 }

 }
}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 131

SFEngine now has all of the code needed to help you implement your playable character.
Save and close the file.

Open the SFGameRenderer.java file. This file is the home to your game loop. In the
previous chapter, you created the game loop and added two methods for drawing and
scrolling the different layers of the background. Now, you are going to add code to your
loop that will draw and move the playable character.

Setting Up the Game Loop
The first step is to instantiate a new SFGoodGuy() called player1:

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();
 private SFGoodGuy player1 = new SFGoodGuy();

 private float bgScroll1;
 private float bgScroll2;
…
}

The player1 object is going to be used in the same way as background and background2.
You will call the loadTexture() and draw() methods from player1 to load your character
into the game.

You need to create a variable that will track how many iterations of the game loop have
passed, so you will know when you flip frames in your sprite animation.

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();
 private SFGoodGuy player1 = new SFGoodGuy();
 private int goodGuyBankFrames = 0;

 private float bgScroll1;
 private float bgScroll2;
…
}

Next, locate the onSurfaceCreated() method of the SFGameRenderer Renderer. This
method handles the loading of game textures. In the last chapter, you called the loading
methods of background and background2 in this method. Now, you need to add a call to
the loadTexture() method of player1.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 132

 private SFGoodGuy player1 = new SFGoodGuy();
 private int goodGuyBankFrames = 0;

...

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);
 background2.loadTexture(gl,SFEngine.BACKGROUND_LAYER_TWO,
SFEngine.context);

 player1.loadTexture(gl, SFEngine.PLAYER_SHIP, SFEngine.context);
 }

}

So far, this code has all been pretty basic: create the texture, and load the texture. Now,
it is time for the real meat of the chapter. It is time to write the method that will control
the moving of your player’s character.

Moving the Character
This section will help you create the code necessary to move your player’s character on
the screen. To do this, you will create a new method that will server as your core game
loop. Finally, you will call methods from this loop that will perform the task of moving
your character. Create a new method in SFGameRenderer SFGameRenderer that takes in a
GL10.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){

 }

...

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 133

Within the movePlayer1() method, you are going to run a switch statement on the
playerFlightAction int that you added to SFEngine earlier in this chapter. Just in case
you have never used one, a switch statement will examine the input object
(playerFlightAction) and execute specific code based on the value of the input. The
cases for this switch statement are PLAYER_BANK_LEFT_1, PLAYER_RELEASE,
PLAYER_BANK_RIGHT_1, and default.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:

 break;
 case SFEngine.PLAYER_BANK_RIGHT_1:

 break;
 case SFEngine.PLAYER_RELEASE:

 break;
 default:

 break;
 }

 }

...

}

Let’s start with the default case. The default case is going to be called when the player
has taken no action at all with the character.

Drawing the Default State of the Character
Right now, the vertices are the same size as the screen. Therefore, if you were to just
draw the playable character to the screen now, it would fill the entire screen. You will
need to scale the game character by about 75 percent so that it looks good in the game.

To do this you are going to use glScalef(). Multiplying the scale by .25 will reduce the
size of the ship to a quarter of its original size. This has one very important after effect
that you need to understand.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 134

In the last chapter, you briefly discovered that to scale or translate the vertices you need
to work in the model matrix mode. Any operation that you do in any matrix mode affects
all items in that matrix mode. Therefore, when you scale the vertices for the player ship
by .25, you also scale the x and y axes that it occupies. In other words, whereas the x
and y axis start at 0 and end at 1 when the scale is defaulted to 0 (full screen), the x and
y axes will run for 0 to 4 when the scale is multiplied by .25.

This is important to you, because when you are trying to keep track of the player’s
location, you need to realize that the background may scroll from 0 to 1 but the player
can scroll from 0 to 4.

Load the model matrix view, and scale the player by .25 on the x and y axes.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:

 break;
 case SFEngine.PLAYER_BANK_RIGHT_1:

 break;
 case SFEngine.PLAYER_RELEASE:

 break;
 default:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 break;
 }

 }

...

}

Next, translate the model matrix on the x axis by the value in the variable
playerBankPosX. The variable playerBankPosX is going to hold the player’s current
position on the x axis. Therefore, whenever the player is taking no action, the character
will be right at the last place it was left.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 135

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
...

 default:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);

 break;
 }

 }

...

}

When the player is at rest, no other action needs to be taken, so load the texture matrix,
and make sure it is at the default position, which is the first sprite in the sprite sheet.
Remember, the texture matrix mode will be the mode that you use to shift the position of
the sprite sheet texture to flip the animation. If the player is not moving the character,
there should be no animation—hence, the texture matrix should default to the first
position.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
...

 default:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 136

 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;
 }

 }

...

}

The next case in the switch statement that you code is for PLAYER_RELEASE. The
PLAYER_RELEASE action will be called when the player releases the control after moving
the character. While you have not yet coded the actual controls for the game, the player
will touch a control telling the character to move. When the player releases this control,
thus telling the character to stop moving, the PLAYER_RELEASE action will be called.

Coding the PLAYER_RELEASE Action
For now, the case for PLAYER_RELEASE will perform the same action as the default case.
That is, the character will stay where it has been left on the screen, and no matter what
texture was being displayer from the sprite sheet, it will be returned to the first texture
on the sheet. Copy and paste the entire code block from default into the case for
PLAYER_RELEASE.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:

 break;
 case SFEngine.PLAYER_BANK_RIGHT_1:

 break;
 case SFEngine.PLAYER_RELEASE:
 gl.glMatrixMode(GL10.GL_MODELVIEW);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 137

 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;

...

 }

 }

...

}

Before you are finished with the PLAYER_RELEASE case, you need to add one more line of
code. Earlier in this chapter, you learned that you cannot flip the animation for your
sprite at the same rate as your game loop (60 frames per second), because with only
two frames in your sprite animation, it would be over before the player realized it
happened. Therefore, you need a variable to hold the number of game loops that have
passed. By knowing the number of game loops that have passed, you can compare that
number to the PLAYER_FRAMES_BETWEEN_ANI constant to determine when you need to flip
the sprite animation frames. The goodGuyBankFrames variable that you created earlier in
this chapter will be used to track the number of game loops that have been executed.

In the PLAYER_RELEASE case, add the following lines of code to increment
goodGuyBankFrames by one every time a loop is executed.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:

 break;
 case SFEngine.PLAYER_BANK_RIGHT_1:

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 138

 break;
 case SFEngine.PLAYER_RELEASE:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 goodGuyBankFrames += 1;

 break;

...
 }

 }

...

}

The PLAYER_RELEASE and default cases were the easiest of the four cases in your
movePlayer1() method. Now, you need to code what will happen when the
PLAYER_BANK_LEFT_1 action is called.

The PLAYER_BANK_LEFT_1 action is called when the player uses the controls to bank the
character ship to the left. This means that not only do you need to not only move the
character along the x axis to the left but you also need to animate the character using
the two sprites on the sprite sheet that represent a bank to the left.

Moving the Character to the Left
As far as OpenGL is concerned, the operations of moving the character along the x axis
and changing the position of the sprite sheet utilize two different matrix modes. You will
need to use the model matrix mode to move the character along the x axis, and you will
need to use the texture matrix mode to move the sprite sheet texture—creating the
banking animation. Let’s tackle the model matrix mode operation first.

The first step is to load up the model matrix mode and set the scale to .25 on the x and
y axes.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 139

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 break;

...
 }

 }

...

}

Next, you are going to move the vertices along the x axis using glTranslatef(). You
subtract the PLAYER_BANK_SPEED from the current x axis position, which is stored in
playerBankPosX. (You are subtracting to get the position that you need to move to,
because you are trying to move the character to the left along the x axis. If you were
trying to move to the right, you would be adding.) Then, you use glTranslatef() to
move the vertices to the position in playerBankPosX.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 SFEngine.playerBankPosX -= SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);

 break;

...

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 140

 }

 }

...

}

Now that you are moving the character along the x axis, you need to flip to the next
frame of animation.

Loading the Correct Sprite
Take a look, once again, at the sprite sheet in Figure 5–1. Notice that the two frames of
animation that correspond to the left-banking motion are the fourth frame on the first line
and the first frame on the second line (keep in mind that the sheet is inverted if it looks
backward to you, so the frames that appear to be banking right will bank left when they
are rendered).

Load the texture matrix mode, and translate the texture to display the fourth image on
the first row. Because textures are translated in percentages, you have to do a little
math. Then again, with only four images on a line, the math is pretty easy.

The x axis of the sprite sheet goes from 0 to 1. If you divide that by 4, each sprite on the
sheet occupies .25 of the x axis. Therefore, to move the sprite sheet to the fourth sprite
on the line, you need to translate it by .75. (The first sprite occupies x values 0 to .24, the
second sprite occupies .25 to .49, the third sprite occupies .50 to .74, and the fourth
sprite occupies .75 to 1.)

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 SFEngine.playerBankPosX -= SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.75f,0.0f, 0.0f);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 141

 break;

...
 }

 }

...

}

The last step before you draw out the ship is to increment goodGuyBankFrames, so you
can start tracking when to flip to the second frame in the script sheet.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 SFEngine.playerBankPosX -= SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.75f,0.0f, 0.0f);
 goodGuyBankFrames += 1;

 break;

...

 }

 }

...

}

This code has one major problem. The player can now move the character to the left
along the x axis, and the sprite of the ship will change to the first sprite of the left bank
animation. The problem is that as the code is written right now, the sprite will move to
the left to infinity. You need to wrap the block of code that moves the character in an if

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 142

. . . else statement that tests to see if the character has reached 0 on the x axis. If the
character is at the 0 position, indicating that they are at the left edge of the screen, stop
moving the character and return the animation to the default sprite.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (SFEngine.playerBankPosX > 0){
 SFEngine.playerBankPosX -= SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.75f,0.0f, 0.0f);
 goodGuyBankFrames += 1;
 }else{
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 }

 break;

...

 }

 }

...

}

Now, draw the character by calling the draw() method, and pop the matrix back on the
stack. This step in the process should be the same as with the two background layers.
In fact, this step in the process is going to be common across almost all OpenGL
operations in this game.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 143

import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (SFEngine.playerBankPosX > 0){
 SFEngine.playerBankPosX -= SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.75f,0.0f, 0.0f);
 goodGuyBankFrames += 1;
 }else{
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 }
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;

...

 }

 }

...

}

Now you have a case whereby, if the player is moving the character to the left, the
vertices are moved along the x axis to the left until they hit zero. Also, the texture starts
off at the default (top-down view) sprite, and when the player moves to the left, the
sprite is changed to the first frame of left banking animation.

Loading the Second Frame of Animation
You need to flip the animation to the second frame of the left-banking animation if the
player moves to the left far enough. Looking at the sprite sheet in Figure 5–1, the second

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 144

frame of left-banking animation is the first frame on the second row. This will be easy
enough to navigate to using glTranslatef(). The question is, how do you know when to
flip the sprite?

Earlier in this chapter, you created a constant in SFEngine named
PLAYER_FRAMES_BETWEEN_ANI and set it to 9. This constant says that you want to flip the
player’s character animation every nine frames of game animation (i.e., of the game
loop). You also created a variable named goodGuyBankFrames that is being incremented
by 1 every time the player’s character is drawn.

You need to compare the current value of goodGuyBankFrames to
PLAYER_FRAMES_BETWEEN_ANI. If goodGuyBankFrames is less, draw the first frame of
animation. If goodGuyBankFrames is greater, draw the second frame of animation. Here is
what your if . . . then statement should look like.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (goodGuyBankFrames < SFEngine.PLAYER_FRAMES_BETWEEN_ANI &&
SFEngine.playerBankPosX > 0){
 SFEngine.playerBankPosX -= SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.75f,0.0f, 0.0f);
 goodGuyBankFrames += 1;
 }else if (goodGuyBankFrames >=
SFEngine.PLAYER_FRAMES_BETWEEN_ANI && SFEngine.playerBankPosX > 0){
 SFEngine.playerBankPosX -= SFEngine.PLAYER_BANK_SPEED;

 }else{
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 }
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 145

 break;

...

 }

 }

...

}

In the if . . . else if condition, you test if the value of goodGuyBankFrames is greater
than PLAYER_FRAMES_BETWEEN_ANI, indicating that you should flip to the next frame of left-
banking animation. Let’s write the code block to flip the animation.

In Figure 5–1, the second frame of left banking animation is on the second row in the
first position. That means that the upper-left corner of that sprite is at the 0 position on
the x axis (furthest to the left) and then a quarter of the way down the sheet on the y axis
(.25). Simply use the glTranslatef() method to move the texture to this position.

NOTE: Before you move the texture you need to load the texture matrix mode.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (goodGuyBankFrames < SFEngine.PLAYER_FRAMES_BETWEEN_ANI &&
SFEngine.playerBankPosX > 0){
 SFEngine.playerBankPosX -= SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.75f,0.0f, 0.0f);
 goodGuyBankFrames += 1;
 }else if (goodGuyBankFrames >=
SFEngine.PLAYER_FRAMES_BETWEEN_ANI && SFEngine.playerBankPosX > 0){
 SFEngine.playerBankPosX -= SFEngine.PLAYER_BANK_SPEED;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 146

 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.25f, 0.0f);
 }else{
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 }
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;

...

 }

 }

...

}

Your switch statement for moving the character to the left and implementing two frames
of sprite animation is complete.

Moving the Character to the Right
The last case statement you need to complete before the movePlayer1() method is
finished is for PLAYER_BANK_RIGHT_1. This case is called when the player wants to move
the character to the right-hand side of the screen, in the positive direction of the x axis.

The layout of the case is going to look the same, but you will need to load up different
frames from the sprite sheet. First, lay out your model matrix, scale the character
vertices, and set up the if . . . else if statement like you did in the
PLAYER_BANK_LEFT_1 case.

This if . . . else if statement will have one difference from the statement in the
PLAYER_BANK_LEFT_1 case. In the PLAYER_BANK_LEFT_1 case, you tested to see if the
current position on the x axis of the vertices was greater than 0, indicating that the
character had not gone off the left-hand side of the screen. For the PLAYER_BANK_RIGHT_1
case, you will need to test if the character has reached the furthest right-hand side of
the screen.

Under default circumstances, the x axis starts at 0 and ends at 1. However, to make the
playable character appear smaller on the screen, you have scaled the x axis to .25. This
means the x axis now goes from 0 to 4. You need to test that the playable character has
not scrolled further than 4 units to the right. Correct?

No, not entirely.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 147

OpenGL tracks the upper-left corner of the vertices. Therefore, the character would
already be off the screen if you tested for the case when it hit 4. You need to take into
account the width of the character vertices. The character vertices are 1 unit wide.
Testing that the character has not exceeded an x axis value of 3 will keep it on the
screen where the player can see it.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){

...

 case SFEngine.PLAYER_BANK_RIGHT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (goodGuyBankFrames < SFEngine.PLAYER_FRAMES_BETWEEN_ANI &&
SFEngine.playerBankPosX < 3){

 }else if (goodGuyBankFrames >=
SFEngine.PLAYER_FRAMES_BETWEEN_ANI && SFEngine.playerBankPosX < 3){

 }else{
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 }
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;

...
 }

 }

...

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 148

This initial block of code in the PLAYER_BANK_RIGHT_1 case is almost the same as in the
PLAYER_BANK_LEFT_1. You are adjusting the model matrix, testing the position of the
character on the x axis, and testing the number of game loops frames that have run to
tell which frame of sprite animation needs to be displayed.

Now, you can display the first and second frames of right-banking animation in the
appropriate places.

Loading the Right-Banking Animation
The first frame of animation that should be displayed when the player banks to the right
is in the first row, second position (referring to the sprite sheet in Figure 5–1). Therefore,
you need to translate the texture matrix by .25 on the x axis and 0 on the y axis to
display this frame.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){
...

 case SFEngine.PLAYER_BANK_RIGHT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (goodGuyBankFrames < SFEngine.PLAYER_FRAMES_BETWEEN_ANI &&
SFEngine.playerBankPosX < 3){
 SFEngine.playerBankPosX += SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f,0.0f, 0.0f);
 goodGuyBankFrames += 1;
 }else if (goodGuyBankFrames >=
SFEngine.PLAYER_FRAMES_BETWEEN_ANI && SFEngine.playerBankPosX < 3){

 }else{
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 }
 player1.draw(gl);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 149

 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;

...
 }

 }

...

}

Notice is this code block that the value of PLAYER_BANK_SPEED is added to, rather than
subtracted from, the player’s current position. This is the key to moving the vertices to
the right, rather than the left, on the x axis.

Repeating this code, you need to translate the texture to .50 on the x axis to display the
second frame of sprite animation for the right-hand bank.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 switch (SFEngine.playerFlightAction){

...

 case SFEngine.PLAYER_BANK_RIGHT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (goodGuyBankFrames < SFEngine.PLAYER_FRAMES_BETWEEN_ANI &&
SFEngine.playerBankPosX < 3){
 SFEngine.playerBankPosX += SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f,0.0f, 0.0f);
 goodGuyBankFrames += 1;
 }else if (goodGuyBankFrames >=
SFEngine.PLAYER_FRAMES_BETWEEN_ANI && SFEngine.playerBankPosX < 3){
 SFEngine.playerBankPosX += SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 150

 gl.glLoadIdentity();
 gl.glTranslatef(0.50f,0.0f, 0.0f);
 }else{
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 }
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;

...

 }

 }

...

}

Your movePlayer1() method is now finished. Your playable character will successfully
move to the left and to the right when the correct action is applied. All you have to do
now is to call the movePlayer1() method from the game loop and create a process to
allow the player to actually move the character.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 @Override
 public void onDrawFrame(GL10 gl) {
 try {
 Thread.sleep(SFEngine.GAME_THREAD_FPS_SLEEP - loopRunTime);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 scrollBackground1(gl);
 scrollBackground2(gl);

 movePlayer1(gl);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 151

 //All other game drawing will be called here

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE_MINUS_SRC_ALPHA);

 }
...

}

Save and close SFGameRenderer.

In the next section of this chapter, you are going to learn how to listen for a TouchEvent
on the screen of an Android device. You will then use that TouchEvent to set the player
action, thus moving the character on the screen to the left or to the right.

Moving Your Character Using a Touch Event
You have created the necessary method and calls to move your playable character
across the screen. However, as of right now, the player has no way to interact with the
game and tell the game loop to make the calls that move the character.

In this section, you will code a simple touch listener that will detect if the player has
touched either the right- or left-hand side of the screen. The player will move the
character to the left or to the right by touching that side of the screen. The listener will
go in the activity that is hosting your game loop, in this case, SFGame.java.

Open SFGame.java, and add an override for the onTouchEvent() method.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;

public class SFGame extends Activity {

...

 @Override
 public boolean onTouchEvent(MotionEvent event) {

 return false;
 }
}

The onTouchEvent() is a standard Android event listener that will listen for any touch
event occurring within the activity. Because your game is run from the SFGame activity,
this is the activity that you must listen for touch events on.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 152

TIP: Don’t confuse the game’s activity with the game’s loop. The game loop is the

SFGameRenderer; the Activity that launches it is SFGame.

The onTouchEvent() listener will fire only when a device’s screen is touched, swiped,
dragged, or released. For this game, you are concerned with only a touch or a release
and which side of the screen it happened on. To help you determine this, Android sends
a MotionEvent view to the onTouchEvent() listener; it will have everything that you need
to determine what kind of touch event fired the listener and where the touch happened
on the screen.

Parsing MotionEvent
Your first concern within the onTouchEvent() listener is to get the x and y coordinates of
the touch, so you can determine if the touch occurred on the left- or right-hand side of
the device screen. The MotionEvent that is passed to the onTouchEvent() listener has
getX() and getY() methods that you can use to determine the x and y coordinates of
the touch event.

NOTE: The x and y coordinates that you are dealing with in the onTouchEvent() listener are

screen coordinates, not OpenGL coordinates.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;

public class SFGame extends Activity {

...

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 float x = event.getX();
 float y = event.getY();

 return false;
 }

}

Next, you are going to set up a playable area on the screen. That is, you do not want to
react to touch events from just anywhere on the screen, so you are going to set up an
area at the bottom of the screen that you will react to. The touchable area will be low on
the screen, so players can touch it with their thumbs as they hold their devices.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 153

Since the playable character occupies roughly the lower fourth of the device screen, you
will set that area up as the area that you will react to.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;

public class SFGame extends Activity {

...

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 float x = event.getX();
 float y = event.getY();
 int height = SFEngine.display.getHeight() / 4;
 int playableArea = SFEngine.display.getHeight() - height;

 return false;
 }

}

You now have the location of the touch event and the area in which you want to react to
touch events. Use a simple if statement to determine whether or not you should react
to this event.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;

public class SFGame extends Activity {

...

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 float x = event.getX();
 float y = event.getY();
 int height = SFEngine.display.getHeight() / 4;
 int playableArea = SFEngine.display.getHeight() - height;
 if (y > playableArea){

 }
 return false;
 }

}

MotionEvent has a very useful method called getAction(), which returns to you the type
of action that was detected on the screen. For the purposes of this game, you are
concerned with the ACTION_UP and ACTION_DOWN actions. These actions indicate the

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 154

moments when the player’s finger initially touched the screen (ACTION_DOWN) and then
came back off the screen (ACTION_UP).

Trapping ACTION_UP and ACTION_DOWN
Set up a simple switch statement to act on the ACTION_UP and ACTION_DOWN actions. Be
sure to leave out the default case, because you only want to react to these two specific
cases.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;

public class SFGame extends Activity {

...

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 float x = event.getX();
 float y = event.getY();
 int height = SFEngine.display.getHeight() / 4;
 int playableArea = SFEngine.display.getHeight() - height;
 if (y > playableArea){
 switch (event.getAction()){
 case MotionEvent.ACTION_DOWN:

 break;
 case MotionEvent.ACTION_UP:

 break;
 }
 }
 return false;
 }

}

Earlier in this chapter, you wrote the code to move the character on the screen. This
code reacted to three action constants that you created: PLAYER_BANK_LEFT_1,
PLAYER_BANK_RIGHT_1, and PLAYER_RELEASE. These actions will be set in the appropriate
cases in the onTechEvent().

Let’s start with the PLAYER_RELEASE. This case will be set when the player lifts a finger
back off the screen, thus triggering an ACTION_UP event.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 155

public class SFGame extends Activity {

...

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 float x = event.getX();
 float y = event.getY();
 int height = SFEngine.display.getHeight() / 4;
 int playableArea = SFEngine.display.getHeight() - height;
 if (y > playableArea){
 switch (event.getAction()){

 case MotionEvent.ACTION_DOWN:

 break;
 case MotionEvent.ACTION_UP:
 SFEngine.playerFlightAction =
SFEngine.PLAYER_RELEASE;
 break;

 }
 }
 return false;
 }

}

Finally, set the PLAYER_BANK_LEFT_1 and PLAYER_BANK_RIGHT_1 actions. To do this, you
still need to determine if the player touched the right- or left-hand side of the screen.
This can easily be determined by comparing the getX() value of the MotionEvent to the
midpoint of the x axis. If the getX() is less than the midpoint, the action was on the left;
if the getX() value is greater than the midpoint, the event happened on the right.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;

public class SFGame extends Activity {

...

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 float x = event.getX();
 float y = event.getY();
 int height = SFEngine.display.getHeight() / 4;
 int playableArea = SFEngine.display.getHeight() - height;
 if (y > playableArea){
 switch (event.getAction()){
 case MotionEvent.ACTION_DOWN:
 if(x < SFEngine.display.getWidth() / 2){
 SFEngine.playerFlightAction =
SFEngine.PLAYER_BANK_LEFT_1;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 156

 }else{
 SFEngine.playerFlightAction =
SFEngine.PLAYER_BANK_RIGHT_1;
 }
 break;
 case MotionEvent.ACTION_UP:
 SFEngine.playerFlightAction = SFEngine.PLAYER_RELEASE;
 break;
 }
 }
 return false;
 }

}

Save and close your SFGame.java class. You have just completed the user interface (UI)
for this game. The player can now touch the right- or left-hand side of the screen to
move the character to the left or to the right.

In the final section of this chapter, we will revisit the game thread and the calculation for
frames per second.

Adjusting the FPS Delay
In the previous chapter, you created a delay to slow down your game loop and force it
to run at 60 frames per second (FPS). This speed is the most desirable one for
developers’ games to run. However, you may have already begun to realize that this
speed is not always achievable.

The more functions that you perform in your game loop, the longer the loop will take to
finish, and the slower the game will run. This means that the delay that you created
needs to be adjusted or turned off altogether, depending on how slowly the game is
running.

Just for comparison, running the game in its current state, with two backgrounds and a
playable character, I am achieving about 10 frames per second on the Windows
emulator, about 35 frames per second on the Droid X, and roughly 43 frames per
second on the Motorola Xoom.

One of the problems is that you are delaying the thread indiscriminately. You need to
adjust the thread delay of the game loop to account for the amount of time it takes to
run the loop. The following code will determine how long it takes for the loop to run and
then subtract that amount from the delay. If the loop takes longer to run than the amount
of the delay, the delay is turned off.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 157

public class SFGameRenderer implements Renderer{

 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();
 private SFGoodGuy player1 = new SFGoodGuy();

 private int goodGuyBankFrames = 0;
 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 private float bgScroll1;
 private float bgScroll2;

 @Override
 public void onDrawFrame(GL10 gl) {
 loopStart = System.currentTimeMillis();
 try {
 if (loopRunTime < SFEngine.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(SFEngine.GAME_THREAD_FPS_SLEEP -
loopRunTime);
 }
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 scrollBackground1(gl);
 scrollBackground2(gl);

 movePlayer1(gl);

 //All other game drawing will be called here

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE_MINUS_SRC_ALPHA);
 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));

 }
...

Compile and run your game. Try to move the character across the screen, and watch for
the change in animation.

Summary
In this chapter, you took another big step forward in the Star Fighter game. You can now
add the following skills to your list of accomplishments:

� Create a playable character.

� Animate a character with textures from a sprite sheet.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 5: Creating Your Character 158

� Detect a touch input on the device’s screen.

� Move and animate the character based on a player’s touch event.

� Adjusted the FPS rate to get the game to run as quickly as possible.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

159

 Chapter

Adding the Enemies
Your skill set as an Android game developer is getting much broader. In the previous
chapter alone, you added your first playable character, worked with sprite animation,
and created a basic listener to allow the player to control the character; for a basic 2-D
shooter, your game is really shaping up.

In this chapter, you will be creating a class to help you manage your textures. You will
also be creating an enemy class that will be used to create the three different types of
enemies in Star Fighter. In the next chapter, you will create a basic AI system for these
enemies.

Midgame Housekeeping
Remember, the point of this book is to help you through the process of creating a game,
from beginning to end. Game creation is not always a linear process. Sometimes, you
need to go back and reevaluate things that you have done to optimize the way your
game works.

The preceding two chapters focused on teaching you how to load and deal with sprites
and sprite sheets. However, with your current code, you are loading a separate sprite
sheet for each character. This was the easiest way to learn how to use the sprite sheet,
but it is by no means the best way to use a sprite sheet. In fact, by creating a separate
sprite sheet for each character you are almost going against the purpose of a sprite
sheet—that is, you should load all of the images for all of characters on to one sprite
sheet.

TIP: You can, of course, still use multiple sprite sheets if you have too many sprites to fit on one

image. But that should not be a problem with the limited number of characters in this game.

By loading all of the images for all of your game’s characters onto one sprite sheet, you
will drastically reduce the amount of memory consumed by your game and the amount
of processing that OpenGL will have to do to render the game.

6

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 160

That being said, it is time to perform some minor housekeeping in your game code to
adapt it to use a common sprite sheet

Creating a Texture Class
You are going to create a common texture class with a loadTexture() method. The
loadTexture() method will perform the same function as the loadTexture() method in
the SFGoodGuy() class. The difference being that this common class will return an int
array that you will be able to pass to all of the instantiated characters.

The first step is to open the SFGoodGuy() class and remove the loadTexture() method
(and any variable that supported it). The modified SFGoodGuy() class should look like this
when you are finished:

package com.proandroidgames;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

import javax.microedition.khronos.opengles.GL10;

public class SFGoodGuy {

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 private float texture[] = {
 0.0f, 0.0f,
 0.25f, 0.0f,
 0.25f, 0.25f,
 0.0f, 0.25f,
 };

 private byte indices[] = {
 0,1,2,
 0,2,3,
 };

 public SFGoodGuy() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);
 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 161

 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);

 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }

 public void draw(GL10 gl, int[] spriteSheet) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[0]);

 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,
GL10.GL_UNSIGNED_BYTE, indexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }

}

CAUTION: When you finish making these changes, depending on the IDE you are using, you will
begin to get some errors from other areas of your code. Don’t worry about them now; you will

address the errors later in this chapter.

Next, let’s create a new common class to load your texture into OpenGL and return an
int array. Create a new class in your main package named SFTextures().

package com.proandroidgames;

public class SFTextures {

}

Now, create a constructor for SFTextures() that accepts a GL10 instance. This instance
will be used to initialize the textures. You will also need a textures variable that initializes
an int array of two elements.

package com.proandroidgames;

import javax.microedition.khronos.opengles.GL10;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 162

public class SFTextures {

 private int[] textures = new int[1];

 public SFTextures(GL10 gl){

 }

}

You need to let OpenGL generate some names for the textures that you are loading.
Previously, this was done in the loadTexture() method of the SFGoodGuy() class using
the glGenTextures() method. However, because you plan on calling this common
textures class multiple times, OpenGL would assign new names to the textures every
time you call the load method, which would make keeping track of your textures difficult,
if not impossible.

To avoid assigning multiple names to the same textures, you are going to move the
glGenTextures() method call to the SFTextures() constructor:

package com.proandroidgames;

import javax.microedition.khronos.opengles.GL10;

public class SFTextures {

 private int[] textures = new int[1];

 gl.glGenTextures(1, textures, 0);

 public SFTextures(GL10 gl){

 }

}

You need to create a loadTexture() method for SFTextures(). In the SFGoodGuy() and
SFBackground() classes, the loadTexture() method was a simple method with no return.
To allow you a better way to control the access of your textures, especially when you
start loading multiple sprite sheets, create the loadTexture() method of SFTextures() to
return an int array.

package com.proandroidgames;

import javax.microedition.khronos.opengles.GL10;

public class SFTextures {

 private int[] textures = new int[1];

 gl.glGenTextures(1, textures, 0);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 163

 public SFTextures(GL10 gl){

 }

 public int[] loadTexture(GL10 gl,int texture, Context context,int textureNumber)
{

 }

}

Notice the addition of the textureNumber parameter. While this will be a 1 for now, in the
next chapter when you start using this class to load multiple sprite sheets, this will be
used to indicate which sheet is being loaded.

The core of the loadTexture() method looks otherwise identical to its counterpart in the
SFGoodGuy() class. The only changes—other than the call to glGenTextures() being
removed— are that the textureNumber parameter is now used as an array pointed in the
glBindTextures() call and loadTextures() now returns the texture’s int array when it is
finished.

package com.proandroidgames;

import java.io.IOException;
import java.io.InputStream;

import javax.microedition.khronos.opengles.GL10;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;

public class SFTextures {

 private int[] textures = new int[1];

 gl.glGenTextures(1, textures, 0);

 public SFTextures(GL10 gl){

 }

 public int[] loadTexture(GL10 gl,int texture, Context context,int textureNumber)
{
 InputStream imagestream =
context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {

 bitmap = BitmapFactory.decodeStream(imagestream);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 164

 }catch(Exception e){

 }finally {

 try {
 imagestream.close();
 imagestream = null;
 } catch (IOException e) {
 }

 }

 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[textureNumber - 1]);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
GL10.GL_CLAMP_TO_EDGE);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
GL10.GL_CLAMP_TO_EDGE);

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

 bitmap.recycle();

 return textures;

 }

}

Your common texture class is finished and ready to use. Save SFTextures() and
SFGoodGuy(), and close them for now. Again, you should now see errors coming from
the SFGameSFGameRenderer() class. Ignore these errors for now; you will take care of
them as you move through this chapter.

In the next section, you will be creating the class that will load up your enemy ships and
prepare them for battle against the player.

Creating the Enemy Class
No matter what games you may have played, there is surely one thing in common with
all of them: there is never just one enemy to fight. Having a single enemy to fight in a
game would result in a very quick and very boring game.

In Star Fighter, you will be creating 30 enemies for the player to fight on the screen. We
outlined the story that Star Fighter is based on in Chapter 2. According to this story,
three different types of enemies are mentioned. In this section of the chapter, you will

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 165

create the class that these three types of enemies will be based on and the 30 enemies
instantiated from.

Adding a New Sprite Sheet
The first thing that you need to add to your project is a new sprite sheet. You learned
about the importance and purpose of sprite sheets to 2-D gaming in the previous
chapter. Now that you have made provisions in your code to use a common sprite sheet
for all of the character sprites, you can add it to your project. Figure 6–1 illustrates the
common sprite sheet.

Figure 6–1. The common sprite sheet

Simply remove the good_guy sprite sheet that was in the drawable folder and add this
one.

NOTE: Notice that the player’s characters are in the same position on this sprite sheet as they
were on the last. Therefore, you will not have to change any of the texture positioning for the

player’s character.

Next, you need to edit the SFEngine class to add the constants and variables that you
will be using in this chapter. There are quite a few of them this time. You will need 17
constants to help you control the enemy AI alone. Some of these you may not use until
the next chapter, but adding them now is a good idea:

 public static int CHARACTER_SHEET = R.drawable.character_sprite;
 public static int TOTAL_INTERCEPTORS = 10;
 public static int TOTAL_SCOUTS = 15;
 public static int TOTAL_WARSHIPS = 5;
 public static float INTERCEPTOR_SPEED = SCROLL_BACKGROUND_1 * 4f;
 public static float SCOUT_SPEED = SCROLL_BACKGROUND_1 * 6f;
 public static float WARSHIP_SPEED = SCROLL_BACKGROUND_2 * 4f;
 public static final int TYPE_INTERCEPTOR = 1;
 public static final int TYPE_SCOUT = 2;
 public static final int TYPE_WARSHIP = 3;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 166

 public static final int ATTACK_RANDOM = 0;
 public static final int ATTACK_RIGHT = 1;
 public static final int ATTACK_LEFT = 2;
 public static final float BEZIER_X_1 = 0f;
 public static final float BEZIER_X_2 = 1f;
 public static final float BEZIER_X_3 = 2.5f;
 public static final float BEZIER_X_4 = 3f;
 public static final float BEZIER_Y_1 = 0f;
 public static final float BEZIER_Y_2 = 2.4f;
 public static final float BEZIER_Y_3 = 1.5f;
 public static final float BEZIER_Y_4 = 2.6f;

Since the enemies that you add to the screen will start off as a class, much like the
background and the playable character, add a new class to your main package named
SFEnemy(). This class will be used to bring your enemies into the game.

TIP: Even though you will have 30 total enemies of three different types, they will all be

instantiated from the same SFEnemy() class.

Creating the SFEnemy Class
In this section, you will create the class that will be used to spawn all three types of
enemies in the Star Fighter game. Add a new class to your project named SFEnemy():

package com.proandroidgames;

public class SFEnemy {

}

Your enemy needs some properties that will help you as you begin to create the AI logic.
You will need properties that you can use to set or get the enemy’s current x and y
positions, the t factor (used to fly the enemy in a curve), and the x and y increments to
reach a target.

package com.proandroidgames;

public class SFEnemy {
 public float posY = 0f; //the x position of the enemy
 public float posX = 0f; //the y position of the enemy
 public float posT = 0f; //the t used in calculating a Bezier curve
 public float incrementXToTarget = 0f; //the x increment to reach a potential
target
 public float incrementYToTarget = 0f; //the y increment to reach a potential
target

}

You will also need properties that will let you set or get the direction from which the
enemy will attack, whether or not the enemy has been destroyed, and what type of
enemy this instantiation represents.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 167

package com.proandroidgames;

public class SFEnemy {
 public float posY = 0f; //the x position of the enemy
 public float posX = 0f; //the y position of the enemy
 public float posT = 0f; //the t used in calculating a Bezier curve
 public float posXToTarget = 0f; //the x increment to reach a potential target
 public float posYToTarget = 0f; //the y increment to reach a potential target

 public int attackDirection = 0; //the attack direction of the ship
 public boolean isDestroyed = false; //has this ship been destroyed?
 public int enemyType = 0; //what type of enemy is this?

}

The next three properties that your enemy class needs are an indicator to let you know if
it has locked on to a target (this will be crucial to your AI logic) and two coordinates that
will represent the lock on position of the target.

package com.proandroidgames;

public class SFEnemy {
 public float posY = 0f; //the x position of the enemy
 public float posX = 0f; //the y position of the enemy
 public float posT = 0f; //the t used in calculating a Bezier curve
 public float posXToTarget = 0f; //the x increment to reach a potential target
 public float posYToTarget = 0f; //the y increment to reach a potential target
 public int attackDirection = 0; //the attack direction of the ship
 public boolean isDestroyed = false; //has this ship been destroyed?
 public int enemyType = 0; //what type of enemy is this
 public boolean isLockedOn = false; //had the enemy locked on to a target?
 public float lockOnPosX = 0f; //x position of the target
 public float lockOnPosY = 0f; //y position of the target

}

Next, give your SFEnemy() class a constructor that takes in two int parameters. The first
parameter will be used to represent the type of enemy that should be
created:TYPE_INTERCEPTOR,TYPE_SCOUT, or TYPE_WARSHIP. The second parameter will be
used to indicate from which direction on the screen the particular enemy will be
attacking: ATTACK_RANDOM,ATTACK_RIGHT, or ATTACK_LEFT.

package com.proandroidgames;

public class SFEnemy {

…

 public SFEnemy(int type, int direction) {

 }

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 168

In the constructor for SFEnemy(), you need to set the enemy type based on the type int
that is passed in to the constructor. You will also set the direction. Seeing these
parameters will let you make decisions in your game loop based on the enemy’s type
and direction of motion.

 package com.proandroidgames;

public class SFEnemy {

…
 public SFEnemy(int type, int direction) {
 enemyType = type;
 attackDirection = direction;

 }

}

The story for Star Fighter (in Chapter 2) described the attack characteristics for the three
different enemies. The scout flies in a swift but predictable pattern, the interceptor locks
onto and flies directly at the player’s character, and the warship maneuvers in a random
pattern. Each of these ships is going to need to start from a specific point on the screen.

Typically in scrolling shooters, the enemies start from a point on the y axis that is off the
screen and then scroll down toward the player. Therefore, the next thing you will do in
your constructor is to establish a y axis starting point for the enemies.

Android’s random number generator is a great way to pick that starting point. The
Android random number generator will generate a number between 0 and 1. Your
enemy’s y axis, however, is from 0 to 4. Multiply the number created by the random
number generator by 4, and the result will be a valid y axis position on the screen. Add 4
to the valid y position to then push that starting point off the screen.

package com.proandroidgames;

public class SFEnemy {

…

private Random randomPos = new Random();
 public SFEnemy(int type, int direction) {
 enemyType = type;
 attackDirection = direction;
 posY = (randomPos.nextFloat() * 4) + 4;

 }

}

That takes care of the y axis; now, you need to establish an x axis position. Take a look
at the constants that you created in SFEngine. Three represent from where on the x axis
an enemy could be attacking: ATTACK_LEFT, ATTACK_RANDOM, and ATTACK_RIGHT. The left-

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 169

hand x-axis value is 0. The right-hand x-axis value is 3 (subtract 1 unit from 4 to account
for the size of the sprite).

You can use a case statement to assign the x-axis starting point based on what attack
direction is passed into the constructor.

package com.proandroidgames;

public class SFEnemy {

…

 public SFEnemy(int type, int direction) {
 enemyType = type;
 attackDirection = direction;
 posY = (randomPos.nextFloat() * 4) + 4;
 switch(attackDirection){
 case SFEngine.ATTACK_LEFT:
 posX = 0;
 break;
 case SFEngine.ATTACK_RANDOM:
 posX = randomPos.nextFloat() * 3;
 break;
 case SFEngine.ATTACK_RIGHT:
 posX = 3;
 break;
 }

 }

}

The last variable that you need to establish is the posT. Don’t worry about what posT
does right now; you will discover that later in this chapter. Set posT to the value of
SFEngine.SCOUT_SPEED.

package com.proandroidgames;

public class SFEnemy {

…
 public SFEnemy(int type, int direction) {
 enemyType = type;
 attackDirection = direction;
 posY = (randomPos.nextFloat() * 4) + 4;
 switch(attackDirection){
 case SFEngine.ATTACK_LEFT:
 posX = 0;
 break;
 case SFEngine.ATTACK_RANDOM:
 posX = randomPos.nextFloat() * 3;
 break;
 case SFEngine.ATTACK_RIGHT:
 posX = 3;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 170

 break;
 }
 posT = SFEngine.SCOUT_SPEED;

 }

}

Two of the enemy types that you can create, the interceptor and the warship, will travel
in diagonal, but straight, lines. The code to generate those attack paths will be handled
in the game loop, because it is relatively easy to guide an object in a straight line. The
scout enemy type, on the other hand, will move in a pattern known as a Bezier curve. In
the next section, you will create the methods that help the enemy fly in a curve.

The Bezier Curve
While you may not know it by name, you will most likely have seen a Bezier curve
before. Figure 6–2 illustrates what a Bezier curve looks like.

Figure 6–2. A quadratic Bezier curve

For the scout to fly in a quadratic Bezier curve from the top to the bottom of the screen,
you will need two methods: one to get you the next x axis value on the Bezier curve and
one to give you the next y axis value on the Bezier curve. Each time you call these
methods, you will be give the next point on the x and y axes that the particular enemy
needs to be moved to.

Luckily, plotting points on a Bezier curve is fairly simple. To construct a quadratic Bezier
curve, you need four Cartesian points: a start, an end, and two points somewhere in
between for the curve to wrap around. These points will never change in the Star Fighter
game. Every scout will follow the same curve, from either the left or right. Therefore,
eight constants were created in SFEngine to represent the four quadratic Bezier curve
points on each axis.

The key value in plotting the points is the t factor The t factor tells the formula where on
the curve you are, thus allowing the formula to calculate the x or y coordinate for that

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 171

single position. Because your ships will be moving at a predefined speed, you will use
that value as the seed value for t.

TIP: If you do not understand the math behind the formulas in this section, there are many great

resources for Bezier curves, including the following Wikipedia page:

http://en.wikipedia.org/wiki/Bézier_curve.

Create two methods in your SFEnemy() class: one to get the next x axis value and one to
get the next y axis value.

package com.proandroidgames;

public class SFEnemy {

…
 public SFEnemy(int type, int direction) {

…
 }

 public float getNextScoutX(){

 }
 public float getNextScoutY(){

 }

}

Here is the formula to find a point on a quadratic Bezier curve on the y axis (replace the
y with x to find the values on the x axis):

(y1*(t
3)) + (y2 * 3 * (t

2) * (1-t)) + (y3 * 3 * t * (1-t)
2) + (y4* (1-t)

3)

Use this formula in your getNextScoutY() method with the correct variables.

package com.proandroidgames;

public class SFEnemy {

…

 public SFEnemy(int type, int direction) {

…
 }

 public float getNextScoutX(){

 }

 public float getNextScoutY(){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 172

 return (float)((SFEngine.BEZIER_Y_1*(posT*posT*posT)) +
(SFEngine.BEZIER_Y_2 * 3 * (posT * posT) * (1-posT)) + (SFEngine.BEZIER_Y_3 * 3 * posT *
((1-posT) * (1-posT))) + (SFEngine.BEZIER_Y_4 * ((1-posT) * (1-posT) * (1-posT))));

 }

}

Use this same formula for the x axis, with one minor change. You will need to reverse
the formula if the enemy is attacking from the left-hand side of the screen as opposed to
the right.

package com.proandroidgames;

public class SFEnemy {

…
 public SFEnemy(int type, int direction) {

…
 }

 public float getNextScoutX(){
 if (attackDirection == SFEngine.ATTACK_LEFT){
 return (float)((SFEngine.BEZIER_X_4*(posT*posT*posT)) +
(SFEngine.BEZIER_X_3 * 3 * (posT * posT) * (1-posT)) + (SFEngine.BEZIER_X_2 * 3 * posT *
((1-posT) * (1-posT))) + (SFEngine.BEZIER_X_1 * ((1-posT) * (1-posT) * (1-posT))));
 }else{
 return (float)((SFEngine.BEZIER_X_1*(posT*posT*posT)) +
(SFEngine.BEZIER_X_2 * 3 * (posT * posT) * (1-posT)) + (SFEngine.BEZIER_X_3 * 3 * posT *
((1-posT) * (1-posT))) + (SFEngine.BEZIER_X_4 * ((1-posT) * (1-posT) * (1-posT))));
 }

 }

 public float getNextScoutY(){
 return (float)((SFEngine.BEZIER_Y_1*(posT*posT*posT)) +
(SFEngine.BEZIER_Y_2 * 3 * (posT * posT) * (1-posT)) + (SFEngine.BEZIER_Y_3 * 3 * posT *
((1-posT) * (1-posT))) + (SFEngine.BEZIER_Y_4 * ((1-posT) * (1-posT) * (1-posT))));
 }

}

Notice, when calculating for the right-hand side of the x axis, that the values are x1, x2,
x3, and x4— from the left, the points are used in the opposite order: x4, x3, x2, and x1.

The remainder of the SFEnemy class should look the same as the SFGoodGuy class, taking
into account the changes made to use the new common sprite sheets.

package com.proandroidgames;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.util.Random;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 173

import javax.microedition.khronos.opengles.GL10;

public class SFEnemy {

 public float posY = 0f;
 public float posX = 0f;
 public float posT = 0f;
 public float incrementXToTarget = 0f;
 public float incrementYToTarget = 0f;
 public int attackDirection = 0;
 public boolean isDestroyed = false;

 public int enemyType = 0;

 public boolean isLockedOn = false;
 public float lockOnPosX = 0f;
 public float lockOnPosY = 0f;

 private Random randomPos = new Random();

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 private float texture[] = {
 0.0f, 0.0f,
 0.25f, 0.0f,
 0.25f, 0.25f,
 0.0f, 0.25f,
 };

 private byte indices[] = {
 0,1,2,
 0,2,3,
 };

 public SFEnemy(int type, int direction) {
 enemyType = type;
 attackDirection = direction;
 posY = (randomPos.nextFloat() * 4) + 4;
 switch(attackDirection){
 case SFEngine.ATTACK_LEFT:
 posX = 0;
 break;
 case SFEngine.ATTACK_RANDOM:
 posX = randomPos.nextFloat() * 3;
 break;
 case SFEngine.ATTACK_RIGHT:

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 174

 posX = 3;
 break;
 }
 posT = SFEngine.SCOUT_SPEED;

 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);

 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }

 public float getNextScoutX(){
 if (attackDirection == SFEngine.ATTACK_LEFT){
 return (float)((SFEngine.BEZIER_X_4*(posT*posT*posT)) +
(SFEngine.BEZIER_X_3 * 3 * (posT * posT) * (1-posT)) + (SFEngine.BEZIER_X_2 * 3 * posT *
((1-posT) * (1-posT))) + (SFEngine.BEZIER_X_1 * ((1-posT) * (1-posT) * (1-posT))));
 }else{
 return (float)((SFEngine.BEZIER_X_1*(posT*posT*posT)) +
(SFEngine.BEZIER_X_2 * 3 * (posT * posT) * (1-posT)) + (SFEngine.BEZIER_X_3 * 3 * posT *
((1-posT) * (1-posT))) + (SFEngine.BEZIER_X_4 * ((1-posT) * (1-posT) * (1-posT))));
 }

 }

 public float getNextScoutY(){
 return (float)((SFEngine.BEZIER_Y_1*(posT*posT*posT)) +
(SFEngine.BEZIER_Y_2 * 3 * (posT * posT) * (1-posT)) + (SFEngine.BEZIER_Y_3 * 3 * posT *
((1-posT) * (1-posT))) + (SFEngine.BEZIER_Y_4 * ((1-posT) * (1-posT) * (1-posT))));
 }

 public void draw(GL10 gl, int[] spriteSheet) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[0]);

 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 6: Adding the Enemies 175

 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,
GL10.GL_UNSIGNED_BYTE, indexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }

}

You now have a working class from which you can spawn all of the enemies in your
game. Save the SFEnemy() class. In the next chapter, you will begin to create the AI for
your enemies.

Summary
In this chapter, you took another major step forward in your skill set. A lot of work has
gone into creating the enemies for your game, and there is still more to do. The following
list describes what you have learned in this chapter, and you will expand on what you
have learned in Chapter 7:

� Create a common texture class to hold a large sprite sheet.

� Create an array to hold all of the game’s enemies for easier
processing.

� Create the SFEnemy() class for spawning three different enemies.

� Create method for moving your enemy in a Bezier curve.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

177

 Chapter

Adding Basic Enemy
Artificial Intelligence
The artificial intelligence (AI) of the enemy will define how the enemy attacks the player
and how easy or difficult the game is for the player to win. It would be easy to create an
AI that anticipates every move of the player by intercepting the listener calls from the
player to touchListener. However, that would not make a fun experience for the player,
and your game would not be very fulfilling. The enemies that you created in the
preceding chapter need some kind of plan of attack by which to engage the player and
create a satisfying gaming experience.

In this chapter, you are going to add the three distinct AIs for the three different enemy
types that were discussed in Chapter 2 and created in Chapter 6: the interceptors,
scouts, and warships. On the surface this task may seem easy given what you learned in
the last chapter, but the fact is that creating the enemies is more difficult than creating
the playable character. Why? Playable characters do not have to think; that is what the
player does. The enemies, on the other hand, need at least a basic AI to guide them
through the game.

Getting the Enemies Ready for AI
You’ll need to first initialize the enemies and their textures before you can deal with the
AI. So, to begin, open and edit the game loop, SFGameRenderer(). You need to add an
array that will hold all of the enemies in the game. To determine the number of enemies,
add the values for TOTAL_INTECEPTORS, TOTAL_SCOUTS, and TOTAL_WARSHIPS (minus 1 to
account for the zero-based array).

package com.proandroidgames;

import java.util.Random;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

7

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 178

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackground background = new SFBackground();
 private SFBackground background2 = new SFBackground();
 private SFGoodGuy player1 = new SFGoodGuy();

 private SFEnemy[] enemies = new SFEnemy[SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1];

 private int goodGuyBankFrames = 0;
 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 private float bgScroll1;
 private float bgScroll2;

...

}

Next, create a new instantiation of the SFTextures class and a new int array to hold the
common sprite sheets. For now, the spriteSheets[] array will contain one element. In
the next chapter, you will change this array so it holds more.

TIP: You could go even further and modify the spriteSheets[] array and SFBackground()
to hold the textures for the background as well as the sprite sheets. Doing so would be easy and

will gain you more optimization.

public class SFGameRenderer implements Renderer{

…

 private SFEnemy[] enemies = new SFEnemy[SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1];
 private SFTextures textureLoader;
 private int[] spriteSheets = new int[1];

 private int goodGuyBankFrames = 0;
 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 private float bgScroll1;
 private float bgScroll2;

...

}

Now, you have an array to hold your enemies but no enemies to put in it. You need three
private methods to fill your array: one each for interceptors, scouts, and warships.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 179

;

public class SFGameRenderer implements Renderer{

…

 private SFEnemy[] enemies = new SFEnemy[SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1];
 private SFTextures textureLoader;
 private int[] spriteSheets = new int[2];

...

 private void initializeInterceptors(){

 }

 private void initializeScouts(){

 }

 private void initializeWarships(){

 }

...

}

Creating Each Enemy’s Logic
Use a simple for loop to instantiate a new enemy of the corresponding type, and add it
to the array. For example, in the initializeInterceptors() method, create a for loop
that counts up to the value of TOTAL_INTERCEPTORS. This loop will instantiate a new
enemy of the type TYPE_INTERCEPTOR and add it to the array.

public class SFGameRenderer implements Renderer{

…
 private SFEnemy[] enemies = new SFEnemy[SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1];
 private SFTextures textureLoader;
 private int[] spriteSheets = new int[2];

;

...

 private void initializeInterceptors(){

 for (int x = 0; x<SFEngine.TOTAL_INTERCEPTORS -1 ; x++){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 180

 SFEnemy interceptor = new SFEnemy(SFEngine.TYPE_INTERCEPTOR,
SFEngine.ATTACK_RANDOM);
 enemies[x] = interceptor;
 }

 }

 private void initializeScouts(){

 }

 private void initializeWarships(){

 }

...

}

Use this same loop logic on the warships.

public class SFGameRenderer implements Renderer{

…

 private SFEnemy[] enemies = new SFEnemy[SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1];
 private SFTextures textureLoader;
 private int[] spriteSheets = new int[2];

...

 private void initializeInterceptors(){

 for (int x = 0; x<SFEngine.TOTAL_INTERCEPTORS -1 ; x++){
 SFEnemy interceptor = new SFEnemy(SFEngine.TYPE_INTERCEPTOR,
SFEngine.ATTACK_RANDOM);
 enemies[x] = interceptor;
 }

 }

 private void initializeScouts(){

 }

 private void initializeWarships(){

 for (int x = SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS -1;
x<SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS -1;
x++){
 SFEnemy interceptor = new SFEnemy(SFEngine.TYPE_WARSHIP,
SFEngine.ATTACK_RANDOM);
 enemies[x] = interceptor;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 181

 }

 }

...

}

The interceptors and the warships both attack from random directions. However, the
scouts will attack from either the right or left. Therefore, in the loop that instantiates the
scouts, split the load in half, and instantiate half from the right and half from the left.

package com.proandroidgames;

public class SFGameRenderer implements Renderer{

…
 private SFEnemy[] enemies = new SFEnemy[SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1];
 private SFTextures textureLoader;
 private int[] spriteSheets = new int[2];

...

 private void initializeInterceptors(){

 for (int x = 0; x<SFEngine.TOTAL_INTERCEPTORS -1 ; x++){
 SFEnemy interceptor = new SFEnemy(SFEngine.TYPE_INTERCEPTOR,
SFEngine.ATTACK_RANDOM);
 enemies[x] = interceptor;
 }

 }

 private void initializeScouts(){

 for (int x = SFEngine.TOTAL_INTERCEPTORS -1;
x<SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS -1; x++){
 SFEnemy interceptor;
 if (x>=(SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS) / 2
){
 interceptor = new SFEnemy(SFEngine.TYPE_SCOUT,
SFEngine.ATTACK_RIGHT);
 }else{
 interceptor = new SFEnemy(SFEngine.TYPE_SCOUT,
SFEngine.ATTACK_LEFT);
 }
 enemies[x] = interceptor;
 }

 }

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 182

 private void initializeWarships(){

 for (int x = SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS -1;
x<SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS -1;
x++){
 SFEnemy interceptor = new SFEnemy(SFEngine.TYPE_WARSHIP,
SFEngine.ATTACK_RANDOM);
 enemies[x] = interceptor;
 }

 }

...

}

Initializing the Enemies
You have your methods to initialize your enemies. All of your other game loop
initialization has taken place in the onSurfaceCreated() method of SFGameRenderer.
Therefore, it stands to reason that the new initialization methods you just created will
also be called from here.

public class SFGameRenderer implements Renderer{

…

 private SFEnemy[] enemies = new SFEnemy[SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1];
 private SFTextures textureLoader;
 private int[] spriteSheets = new int[2];

...

 private void initializeInterceptors(){

 for (int x = 0; x<SFEngine.TOTAL_INTERCEPTORS -1 ; x++){
 SFEnemy interceptor = new SFEnemy(SFEngine.TYPE_INTERCEPTOR,
SFEngine.ATTACK_RANDOM);
 enemies[x] = interceptor;
 }

 }

 private void initializeScouts(){

 for (int x = SFEngine.TOTAL_INTERCEPTORS -1;
x<SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS -1; x++){
 SFEnemy interceptor;
 if (x>=(SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS) / 2
){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 183

 interceptor = new SFEnemy(SFEngine.TYPE_SCOUT,
SFEngine.ATTACK_RIGHT);
 }else{
 interceptor = new SFEnemy(SFEngine.TYPE_SCOUT,
SFEngine.ATTACK_LEFT);
 }
 enemies[x] = interceptor;
 }

 }

 private void initializeWarships(){

 for (int x = SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS -1;
x<SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS -1;
x++){
 SFEnemy interceptor = new SFEnemy(SFEngine.TYPE_WARSHIP,
SFEngine.ATTACK_RANDOM);
 enemies[x] = interceptor;
 }

 }

...

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 initializeInterceptors();
 initializeScouts();
 initializeWarships();

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);
 background2.loadTexture(gl,SFEngine.BACKGROUND_LAYER_TWO,
SFEngine.context);
 }

}

Loading the Sprite Sheet
With the enemies[] array initialized, you can focus on the sprite sheet. Recall that you
created a common texture method that will return the OpenGL assigned names of all
textures assigned in an int array. This int array of OpenGL names is going to be held in
the spriteSheets[] array.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 184

Instantiate your textureLoader() method. After textureLoader() is instantiated, call the
loadTexture() method, passing it the CHARACTER_SHEET, and assign the return to the
spriteSheets[] array.

public class SFGameRenderer implements Renderer{

...

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 initializeInterceptors();
 initializeScouts();
 initializeWarships();
 textureLoader = new SFTextures(gl);
 spriteSheets = textureLoader.loadTexture(gl, SFEngine.CHARACTER_SHEET,
SFEngine.context, 1);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);
 background2.loadTexture(gl,SFEngine.BACKGROUND_LAYER_TWO,
SFEngine.context);
 }

}

Your initialization of the enemies and their textures is complete. 3+39.```

+It is time to move on to the AI logic. Let’s start with the interceptors.

Reviewing the AI
The description of the interceptor AI sounds complicated, but in reality, it is the easiest
of the three enemies. The interceptor will start off moving in a straight line down the y
axis. At some point along the y axis, it will lock on to the player’s ship and fly directly at
those coordinates in an effort to ram the player’s ship.

The way you will accomplish this is by subtracting a predefined amount,
INTERCEPTOR_SPEED, from the y axis position to slowly move the interceptor down the
screen. Because the interceptor could be at any random point above the visible edge of
the screen, you have to wait for it to be visible before it can lock on to the enemy. Once
the interceptor has reached this point, you will then pass it the x and y coordinates of
the player’s ship at that moment. Finally, you will use a simple slope formula to move the
Interceptor toward these coordinates.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 185

Creating the moveEnemy() Method
The first step to adding some enemy AI is to create a moveEnemy() method that will hold
all of the AI logic for your enemies. Just like the movePlayer1() method, the moveEnemy()
method will be called by the game loop to update the positions of the enemy ships.

package com.proandroidgames;

import java.util.Random;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 }

...

}

The moveEnemy() method will update all of your enemies in one call. Addressing all of
your enemies in one call is always the best way to approach updating a large amount of
nonplayable characters. Doing so can save you precious processor cycles.

Creating an enemies[] Array Loop
You want to create a for loop within the moveEnemy() method that will be able to cycle
through each live enemy in the enemies[] array. By limiting the core of your process to
only those enemies that have not been destroyed, you take care of two things in your
game. First, you ensure that you are not drawing enemies that should no longer be on
the screen. Second, you ensure that you are not wasting cycles on enemies that would
not have any moves to be processed.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 }
 }

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 186

 }

...

}

NOTE: Don’t worry too much about what actually sets the isDestroyed flag of the enemies. We
will address this in a section about collision detection in the next chapter. You will also apply this

logic to the player’s character.

Now, you have a loop within your updating method that runs once for each enemy in
your game and skips those enemies that have been destroyed.

Moving Each Enemy Using Its AI Logic
You have to run this loop for three different kinds of enemies, each with its own AI. The
enemy class has an enemyType property that you set when you instantiated the enemy.
Therefore, you will need to set up a switch on the enemyType so that you will know which
AI to run for the enemy that is being updated.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

 break;
 case SFEngine.TYPE_SCOUT:

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 187

In the next section, you will create the interceptor AI, the logic that drives the interceptor
enemies toward the player.

Creating the Interceptor AI
Let’s now create the interceptor AI. The first thing that you are going to want to test for
in this AI is whether or not the Interceptor has already moved off the screen. Recall that
all of the enemies are going to move from the top to the bottom of the screen. Unless
they are destroyed by the player, they will eventually reach the bottom of the screen.

You have a choice when you are designing a game like this. When an enemy reaches
the bottom of the screen, you can either kill it to take it out of the rotation, or you can
reset it to run again. For Star Fighter, you are going to reset the enemy to a random
position above the top of the screen so that it will continue to attack the player until it is
destroyed.

Test if the y axis position of the enemy is less than 0—below the bottom edge of the
screen—and if so, reset its x and y positions to random positions. Also, you will want to
clear any lock on positions and lock flags, just in case the enemy had previously locked
onto the player.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }

 break;
 case SFEngine.TYPE_SCOUT:

 break;
 case SFEngine.TYPE_WARSHIP

 break;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 188

 }

 }
 }

 }

...

}

In the next section, you will add the OpenGL code to the logic.

Adjusting the Vertices
The next step in the AI is some standard OpenGL work. You need to load the model
matrix mode and adjust the vertices. This code should look very familiar to you, because
it was already covered in the last chapter. In short, you are resizing the vertices so that
the enemy ship is about the same size and the player—not the size of the entire screen.

package com.proandroidgames;

import java.util.Random;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 189

 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 break;
 case SFEngine.TYPE_SCOUT:

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

At this point, the AI for the interceptor is going to be split into two different clauses. The
first describes what happens before the interceptor locks onto the player’s position, and
the second describes what happens after the interceptor locks on to the player’s
position.

Locking on to the Player’s Position
Before the Interceptor locks onto the player’s position, it will simply travel down the
screen in straight line. Pick an arbitrary position on the y axis; this will be the point at
which the Interceptor locks onto the player’s position. For Star Fighter, the interceptor’s
y axis position when it locks onto the player’s position is 3, meaning the interceptor will
start at a random position on the y axis and move down in a straight line until it reaches
3.

;

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 190

 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (enemies[x].posY >= 3){

 }else{

 }

 break;
 case SFEngine.TYPE_SCOUT:

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

Before the Interceptor reaches the lock on position, it will move in a straight line down
the screen. This is accomplished by subtracting the INTERCEPTOR_SPEED value from the
interceptor’s current y axis position.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 191

 case SFEngine.TYPE_INTERCEPTOR:

 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (enemies[x].posY >= 3){
 enemies[x].posY -=
SFEngine.INTERCEPTOR_SPEED;
 }else{

 }

 break;
 case SFEngine.TYPE_SCOUT:

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

Now, you can program the second half of the interceptor’s AI logic.

Implementing a Slope Formula
First, set the interceptor to locked on, and get the current position of the player.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 192

 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (enemies[x].posY >= 3){
 enemies[x].posY -=
SFEngine.INTERCEPTOR_SPEED;
 }else{
 if (!enemies[x].isLockedOn){
 enemies[x].lockOnPosX =
SFEngine.playerBankPosX;
 enemies[x].isLockedOn = true;

 }

 }

 break;
 case SFEngine.TYPE_SCOUT:

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

Next, you are going to use a simple slope formula to determine the increments at which
the interceptor needs to move to reach the player. Slope can be determined by using
this formula:

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 193

(x1 – x2) / (y1 – y2)

Just to make things a little more interesting, you want the Interceptor to speed up once
it locks onto the target. Therefore, replace y2 in the slope with INTERCEPTOR_SPEED. There
is one modification you need to make to this formula before you can use it.

The formula as it is written will give you the full position directly to the player in one shot.
However, you want to move in steady increments to the player. Therefore, you need to
divide y1 by y2 rather than subtracting y2. This will give you an incremental value that you
can keep adding to itself to move the interceptor along.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (enemies[x].posY >= 3){
 enemies[x].posY -=
SFEngine.INTERCEPTOR_SPEED;
 }else{
 if (!enemies[x].isLockedOn){
 enemies[x].lockOnPosX =
SFEngine.playerBankPosX;
 enemies[x].isLockedOn = true;
 enemies[x].incrementXToTarget =
(float) ((enemies[x].lockOnPosX - enemies[x].posX)/ (enemies[x].posY /
(SFEngine.INTERCEPTOR_SPEED * 4)));
 }

 }

 break;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 194

 case SFEngine.TYPE_SCOUT:

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

Finish the logic by setting the x and y positions of the interceptor.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (enemies[x].posY >= 3){
 enemies[x].posY -=
SFEngine.INTERCEPTOR_SPEED;
 }else{
 if (!enemies[x].isLockedOn){
 enemies[x].lockOnPosX =
SFEngine.playerBankPosX;
 enemies[x].isLockedOn = true;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 195

 enemies[x].incrementXToTarget =
(float) ((enemies[x].lockOnPosX - enemies[x].posX)/ (enemies[x].posY /
(SFEngine.INTERCEPTOR_SPEED * 4)));
 }
 enemies[x].posY -=
(SFEngine.INTERCEPTOR_SPEED * 4);
 enemies[x].posX +=
enemies[x].incrementXToTarget;

 }

 break;
 case SFEngine.TYPE_SCOUT:

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

Finally, you can update OpenGL with the position changes that you made to your
interceptor. You need to move the vertices according to the new x and y axis positions
of the Interceptor. Then, you need to push the texture matrix off the stack and set the
texture to the interceptor sprite on the common sprite sheet.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 196

 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (enemies[x].posY >= 3){
 enemies[x].posY -=
SFEngine.INTERCEPTOR_SPEED;
 }else{
 if (!enemies[x].isLockedOn){
 enemies[x].lockOnPosX =
SFEngine.playerBankPosX;
 enemies[x].isLockedOn = true;
 enemies[x].incrementXToTarget =
(float) ((enemies[x].lockOnPosX - enemies[x].posX)/ (enemies[x].posY /
(SFEngine.INTERCEPTOR_SPEED * 4)));
 }
 enemies[x].posY -=
(SFEngine.INTERCEPTOR_SPEED * 4);
 enemies[x].posX +=
enemies[x].incrementXToTarget;
 gl.glTranslatef(enemies[x].posX,
enemies[x].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f, .25f , 0.0f);
 }

 break;
 case SFEngine.TYPE_SCOUT:

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

Draw the interceptor, and you are ready to tackle the scout AI.

public class SFGameRenderer implements Renderer{

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 197

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (enemies[x].posY >= 3){
 enemies[x].posY -=
SFEngine.INTERCEPTOR_SPEED;
 }else{
 if (!enemies[x].isLockedOn){
 enemies[x].lockOnPosX =
SFEngine.playerBankPosX;
 enemies[x].isLockedOn = true;
 enemies[x].incrementXToTarget =
(float) ((enemies[x].lockOnPosX - enemies[x].posX)/ (enemies[x].posY /
(SFEngine.INTERCEPTOR_SPEED * 4)));
 }
 enemies[x].posY -=
(SFEngine.INTERCEPTOR_SPEED * 4);
 enemies[x].posX +=
enemies[x].incrementXToTarget;
 gl.glTranslatef(enemies[x].posX,
enemies[x].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f, .25f , 0.0f);
 }
 enemies[x].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;
 case SFEngine.TYPE_SCOUT:

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 198

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

In the next section, you will create the AI logic for the scout enemy type.

Creating the Scout AI
Now that you have gotten your hands dirty with a little AI work, the remaining two
enemies should be fairly easy. The only major difference between the scout and the
interceptor is that the scout is going to move in a predefined pattern down the screen.

First, test to determine if the scout is off the bottom of the screen; if it is, reset it. In this
same logic for the interceptor, you set both the x and y axis positions to random values.
However, the scout will only attack from the extreme left or the extreme right of the
screen. Therefore, set the x axis position to either 0 or 3 based on its direction of attack.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < sfengine.TOTAL_INTERCEPTORS + sfengine.TOTAL_SCOUTS
+ sfengine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

...

 break;
 case SFEngine.TYPE_SCOUT:
 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].isLockedOn = false;
 enemies[x].posT = SFEngine.SCOUT_SPEED;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 199

 enemies[x].lockOnPosX =
enemies[x].getNextScoutX();
 enemies[x].lockOnPosY =
enemies[x].getNextScoutY();
 if(enemies[x].attackDirection ==
SFEngine.ATTACK_LEFT){
 enemies[x].posX = 0;
 }else{
 enemies[x].posX = 3f;
 }
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

Just like you did for the interceptor, you are going to slowly move the scout down the
screen until it reaches the lock on point.

Setting a Random Point to Move the Scout
Since the action would look far too mechanical to the player if all of the enemies
changed direction at the same point on the screen, you should set the lock-on point for
the scout a little lower than that of the interceptor; otherwise, the code is the same.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < sfengine.TOTAL_INTERCEPTORS + sfengine.TOTAL_SCOUTS
+ sfengine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 200

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

...

 break;
 case SFEngine.TYPE_SCOUT:
 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].isLockedOn = false;
 enemies[x].posT = SFEngine.SCOUT_SPEED;
 enemies[x].lockOnPosX =
enemies[x].getNextScoutX();
 enemies[x].lockOnPosY =
enemies[x].getNextScoutY();
 if(enemies[x].attackDirection ==
SFEngine.ATTACK_LEFT){
 enemies[x].posX = 0;
 }else{
 enemies[x].posX = 3f;
 }
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (enemies[x].posY >= 2.75f){
 enemies[x].posY -= SFEngine.SCOUT_SPEED;
 }else{

 }

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}
In the next section, you will learn how to move the scout along a Bezier curve.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 201

Moving Along a Bezier Curve
Luckily, you have already created methods to automatically supply you with the next x
and y coordinates in a Bezier curve. All you have to do now is call the getNextScoutX()
and getNextScoutY() methods to begin moving the scout along its curved path.
Increment posT by the value of SCOUT_SPEED after you call these methods; otherwise, you
will get the same values the next time you call them.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){
 for (int x = 0; x < sfengine.TOTAL_INTERCEPTORS + sfengine.TOTAL_SCOUTS
+ sfengine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){
 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

...

 break;
 case SFEngine.TYPE_SCOUT:
 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].isLockedOn = false;
 enemies[x].posT = SFEngine.SCOUT_SPEED;
 enemies[x].lockOnPosX =
enemies[x].getNextScoutX();
 enemies[x].lockOnPosY =
enemies[x].getNextScoutY();
 if(enemies[x].attackDirection ==
SFEngine.ATTACK_LEFT){
 enemies[x].posX = 0;
 }else{
 enemies[x].posX = 3f;
 }
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (enemies[x].posY >= 2.75f){
 enemies[x].posY -= SFEngine.SCOUT_SPEED;
 }else{
 enemies[x].posX =
enemies[x].getNextScoutX();
 enemies[x].posY =
enemies[x].getNextScoutY();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 202

 enemies[x].posT += SFEngine.SCOUT_SPEED;
 }

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

Believe it or not, that is all there is to the scout AI. Finish up this enemy’s AI by
performing your OpenGL procedure to translate the vertices and set the texture to the
correct sprite for the scout.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

...

 break;
 case SFEngine.TYPE_SCOUT:
 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].isLockedOn = false;
 enemies[x].posT = SFEngine.SCOUT_SPEED;
 enemies[x].lockOnPosX =
enemies[x].getNextScoutX();
 enemies[x].lockOnPosY =
enemies[x].getNextScoutY();
 if(enemies[x].attackDirection ==
SFEngine.ATTACK_LEFT){
 enemies[x].posX = 0;
 }else{

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 203

 enemies[x].posX = 3f;
 }
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (enemies[x].posY >= 2.75f){
 enemies[x].posY -= SFEngine.SCOUT_SPEED;
 }else{
 enemies[x].posX =
enemies[x].getNextScoutX();
 enemies[x].posY =
enemies[x].getNextScoutY();
 enemies[x].posT += SFEngine.SCOUT_SPEED;
 }
 gl.glTranslatef(enemies[x].posX,
enemies[x].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.75f, .25f , 0.0f);
 enemies[x].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;
 case SFEngine.TYPE_WARSHIP

 break;

 }

 }
 }

 }

...

}

The last bit of AI that you need to add to your moveEnemy() method is the warship.

Creating the Warship AI
In the story for Star Fighter, the warship moves in a random direction toward the player.
You will accomplish this by selecting a random position on the x axis and, using the
same logic as the interceptor, moving the warship toward the random point, rather than
directly to the position of the player.

Moving the warship toward a random position will make the game less predictable and
make the enemy harder to fight. However, the AI for the warship will be almost identical

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 204

to that of the interceptor, except that you need to replace the player’s locked-on x
position with a random number between 0 and 3.

public class SFGameRenderer implements Renderer{

...

 private void moveEnemy(GL10 gl){

 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){

 Random randomPos = new Random();

 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:

...

 break;
...

 break;
 case SFEngine.TYPE_WARSHIP
 if (enemies[x].posY < 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 if (enemies[x].posY >= 3){
 enemies[x].posY -=
SFEngine.WARSHIP_SPEED;
 }else{
 if (!enemies[x].isLockedOn){
 enemies[x].lockOnPosX =
randomPos.nextFloat() * 3;
 enemies[x].isLockedOn = true;
 enemies[x].incrementXToTarget =
(float) ((enemies[x].lockOnPosX - enemies[x].posX)/ (enemies[x].posY /
(SFEngine.WARSHIP_SPEED * 4)));
 }
 enemies[x].posY -=
(SFEngine.WARSHIP_SPEED * 2);
 enemies[x].posX +=
enemies[x].incrementXToTarget;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 7: Adding Basic Enemy Artificial Intelligence 205

 }
 gl.glTranslatef(enemies[x].posX,
enemies[x].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.50f, .25f , 0.0f);

 enemies[x].draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;

 }

 }
 }

 }

...

}

Finish your game loop by calling your new moveEnemy() method from the onDrawFrame()
method, right after you call movePlayer1().

Summary
In this chapter, you learned a great deal about creating three different, basic AI
structures for your enemies. You also

� Created the calls to load multiple textures

� Created methods to move your enemies

� Tested for the condition of your enemy before moving it

� Created logic for moving your enemies along paths

In the next chapter, you will finish your game by developing some weapons and
implementing collision detection.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

207

 Chapter

Defend Yourself!
Your gaming development skills are coming along at a great pace now. While Star
Fighter is not going to win any gaming awards, it is a perfect sandbox for you to hone
your newly developed game-making skills.

Now, you find yourself at the last chapter of this book that will deal directly with the
development of a 2-D sprite-based game. In this chapter, you are going to add a
weapon for your playable character to use and create some basic 2-D collision
detection. You will load a sprite sheet that contains some weapon images, write some AI
logic for the bullets to follow a path, and create some collision detection to ensure you
know when your weapons hit their targets.

If this were a going to be a full game that you were going to release to the public, you
would want to add some score tracking, multiple levels, and possibly items such as
power-ups and upgradeable weapons. However, the real purpose of this small 2-D
project is to give you a proper base of knowledge and enough experience using the
skills so that the chapters on 3-D game development (Chapters 10–12) will make sense
to you. At the end of the chapter, you’ll have the opportunity to review some of the key
files that you’ve worked on thus far. This will ensure you have everything in place before
moving on to the next stage of 3-D development.

Creating a Weapon Sprite Sheet
Your player would not last very long in the game without a way to defend against the
onslaught of enemies that you set upon them in the last chapter. Therefore, you are
going to arm your player with the standard space-fighting weapon—a blaster.

You first need to create a sprite sheet for your weapon, in the same way you created
one for the enemies in Chapter 6 and for the playable character in Chapter 5.

8

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 208

NOTE: Theoretically, the weapons could be included on the same sprite sheet as the player and
the enemy ships. However, it is good practice for you to see how to juggle two textures in

OpenGL.

Add the sprite sheet (it can be downloaded from this book’s page on Apress.com, along
with the code to this project) to your Star Fighter project. The sprite sheet in Figure 8–1
includes multiple weapons and character explosions.

Figure 8–1. Weapon sprite sheet

Once you have added the sprite sheet to your project, open the SFEngine.java file and
add the following constants to it:

SFEngine public static final int WEAPONS_SHEET = R.drawable.destruction;
 public static final int PLAYER_SHIELDS = 5;
 public static final int SCOUT_SHIELDS = 3;
 public static final int INTERCEPTOR_SHIELDS = 1;
 public static final int WARSHIP_SHIELDS = 5;
 public static final float PLAYER_BULLET_SPEED = .125f;
SFMusic

The WEAPONS_SHEET constant is going to hold the pointer to your new sprite sheet. The
SHOUT_SHIELDS, INTERCEPTOR_SHIELDS, and WARSHIP_SHIELDS constants will indicate how
many hits the respective enemies can take before being destroyed, and the
PLAYER_BULLET_SPEED constant will hold the speed at which the blaster fire will leave the
playable character and travel up the screen.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 209

Creating a Weapon Class
When you created the playable character and the enemies, you created a class to base
them from. You are going to follow the same process for the weapon. Create a new
class called SFWeapon for your weapons.

package com.proandroidgames;

public class SFWeapon {

}

You need to know three things about your weapons to draw them to the screen: the x
and y positions of the sprite’s vertex and whether the sprite is currently on the screen.
The x and y positions are going to help you place the sprite on the correct point on the
screen, and they will also help you in determining collisions.

Just as you might see multiple enemies, more than one blaster shot will be on the
screen at a time. Therefore, you are going to have the weapons in an array. You will
need to know, when you loop through your array, if the shot that you are looking at is
currently on the screen or if it is free to be fired.

Add the following public properties to your class:

package com.proandroidgames;

public class SFWeapon {

 public float posY = 0f;
 public float posX = 0f;
 public boolean shotFired = false;

}

Create the vertices, indices, and texture arrays the same way you did in the enemy and
playable character classes. These arrays, along with the constructor, will be used to set
the data needed for OpenGL to draw your weapons to the screen.

public class SFWeapon {

 public float posY = 0f;
 public float posX = 0f;
 public boolean shotFired = false;

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 210

 };

 private float texture[] = {
 0.0f, 0.0f,
 0.25f, 0.0f,
 0.25f, 0.25f,
 0.0f, 0.25f,
 };

 private byte indices[] = {
 0,1,2,
 0,2,3,
 };

 public SFWeapon() {

 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
vertexBuffer.put(vertices);
 vertexBuffer.position(0);

byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);

 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }

}

The last step to creating a weapon class is to make an onDraw() method. Having
followed along with the previous chapters, you should be very familiar with the onDraw()
method. Just be aware that the weapon sprite sheet is going to be the second OpenGL
pointer in the spriteSheet array that you created for the game loop in the previous
chapter. Therefore, alter the onDraw() method appropriately so that you are pulling from
the correct sprite sheet when you call the method.

public class SFWeapon {

…

 public void draw(GL10 gl, int[] spriteSheet) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[1]);

 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 211

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,
GL10.GL_UNSIGNED_BYTE, indexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }
}

With the class for your weapons created, you can now move over to the game loop and
add the weapons. In the next section, you will create the automatic firing process for your
playable character and let it fire the weapons from the weapon class that you created.

Giving Your Weapon a Trajectory
Now that you have your weapon class created, you’re ready to instantiate it and create a
method to allow the playable character to fire it. Recall that, in the story for Star Fighter,
the playable character’s weapon is autofired. Therefore, the method that you create to
fire the weapon must do so without interaction from the player.

Creating a Weapon Array
Like you did for the enemy ships, you are going to create an array to hold all of the
possible shots that your player could fire. Open SFGameRenderer, and create a new array
of SFWeapon() in your game loop class.

package com.proandroidgames;

import java.util.Random;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackGround background = new SFBackGround();
 private SFBackGround background2 = new SFBackGround();
 private SFGoodGuy player1 = new SFGoodGuy();
 private SFEnemy[] enemies = new SFEnemy[SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1];
 private SFTextures textureLoader;
 private int[] spriteSheets = new int[2];
 private SFWeapon[] playerFire = new SFWeapon[4];

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 212

...

}

In the preceding chapter, you created a common texture class. Because the class is
currently instantiated in your game loop, it will hold two textures. It is now time to add a
second sprite sheet to this array.

Adding a Second Sprite Sheet
The second sprite sheet is the one that holds the weapons.

public class SFGameRenderer implements Renderer{

...

@Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 initializeInterceptors();
 initializeScouts();
 initializeWarships();
 initializePlayerWeapons();
 textureLoader = new SFTextures(gl);
 spriteSheets = textureLoader.loadTexture(gl, SFEngine.CHARACTER_SHEET,
SFEngine.context, 1);
spriteSheets = textureLoader.loadTexture(gl, SFEngine.WEAPONS_SHEET, SFEngine.context,
2);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);
 background2.loadTexture(gl,SFEngine.BACKGROUND_LAYER_TWO,
SFEngine.context);

}

CAUTION: Be careful to label the new sheet as number 2, or you will just replace the previous

sheet.

In the preceding chapter, you wrote an initialization method to instantiate new copies of
the enemy class and added it to the enemies’ array. You are going to follow the same
process when creating the weapons for you playable character.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 213

Initializing the Weapons
Start by creating an initialization class named initializePlayerWeapons() as follows:

public class SFGameRenderer implements Renderer{

...

 private void initializePlayerWeapons(){

 }

...

}

In the initializePlayerWeapons() method, you need to loop through the playerFire[]
array that you created and add a new instantiation of the SFWeapon() class to it.

public class SFGameRenderer implements Renderer{

...

 private void initializePlayerWeapons(){
 for(int x = 0; x < 4; x++){
 SFWeapon weapon = new SFWeapon();
 playerFire[x] = weapon;
 }

 }

...

}

Finish off the initialization method by setting the initial properties of the first shot to be
fired. Since the weapon is autofired, you can set the first shot as having been fired. The
x axis position of the shot is going to be equal to the current x axis position of the player
character.

As for the y axis position, set that to 1.25. This will set the y axis of the shot to be slightly
above the player’s ship, giving it the appearance of coming out of a forward-facing
blaster cannon. If you set the y axis lower, the shot will be drawn over the ship and look
like it is coming from somewhere on top of the ship.

public class SFGameRenderer implements Renderer{

...

 private void initializePlayerWeapons(){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 214

 for(int x = 0; x < 4; x++){
 SFWeapon weapon = new SFWeapon();
 playerFire[x] = weapon;
 }
 playerFire[0].shotFired = true;
 playerFire[0].posX = SFEngine.playerBankPosX;
 playerFire[0].posY = 1.25f;
 }

...

}

The array for the weapon shots is created, instantiated, and populated. In the previous
chapters, you created private methods that could be called from the game loop to move
players and enemies. Now, you need to create a private method to move the weapon
shots up the screen.

Moving the Weapon Shots
The trajectory of each shot will be a straight line, and it will move from the player’s x
position at the time of the shot to the top of the screen. Create a method named
firePlayerWeapon() to be used to move each shot in a straight line as it is fired.

public class SFGameRenderer implements Renderer{

...

 private void initializePlayerWeapons(){
 for(int x = 0; x < 4; x++){
 SFWeapon weapon = new SFWeapon();
 playerFire[x] = weapon;
 }
 playerFire[0].shotFired = true;
 playerFire[0].posX = SFEngine.playerBankPosX;
 playerFire[0].posY = 1.25f;
 }

...

 private void firePlayerWeapon(GL10 gl){

 }

...

}

In the firePlayerWeapon() method, create a loop that will run only if the shot has been
fired. This will save you from looping on shots that do not need to be drawn.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 215

public class SFGameRenderer implements Renderer{

...

 private void firePlayerWeapon(GL10 gl){
 for(int x = 0; x < 4; x++){
 if (playerFire[x].shotFired){

 }
 }

 }

...

}

The first thing that you are doing in this method is creating an int named nextShot. The
autofire feature of the playable character fires each shot in succession. Therefore, one
shot should not be fired until the shot before has traveled an acceptable distance away
from the character. The nextShotint tracks the next shot to be fired so you can set some
initial properties on it when the time is right.

public class SFGameRenderer implements Renderer{

...

 private void firePlayerWeapon(GL10 gl){
 for(int x = 0; x < 4; x++){
 if (playerFire[x].shotFired){
 int nextShot = 0;

 }
 }
 }

...

}

Detecting the Edge of the Screen
You need a way to determine if a shot has hit the edge of the viewable screen, so the
cannon blast isn’t drawn when the player can’t see it, thus wasting valuable resources.
Set up an ifstatement to test if the current shot has gone off the screen. If the shot has
extended off the screen, set its shotFired property to false to prevent it from being
drawn unnecessarily.

public class SFGameRenderer implements Renderer{

...

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 216

 private void firePlayerWeapon(GL10 gl){
 for(int x = 0; x < 4; x++){
 if (playerFire[x].shotFired){
 int nextShot = 0;
if (playerFire[x].posY > 4.25){
 playerFire[x].shotFired = false;
 }else{

 }

 }
 }
 }

...

}

Assuming the shot has not yet extended off the screen, it must still be in the player’s
view and must be dealt with. Because the shots fly in a straight trajectory, all you have
to do to move the shot is continue to add PLAYER_BULLET_SPEED to the current y position
of the shot. Then, you can call all of the OpenGL operations that you have been dealing
with when drawing characters to the screen.

TIP: If any of the OpenGL operations in the following code do not look familiar, review Chapters 4

and 5.

public class SFGameRenderer implements Renderer{

...

 private void firePlayerWeapon(GL10 gl){
 for(int x = 0; x < 4; x++){
 if (playerFire[x].shotFired){
 int nextShot = 0;
 if (playerFire[x].posY > 4.25){
 playerFire[x].shotFired = false;
 }else{

playerFire[x].posY += SFEngine.PLAYER_BULLET_SPEED;
gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 0f);
gl.glTranslatef(playerFire[x].posX, playerFire[x].posY, 0f);

gl.glMatrixMode(GL10.GL_TEXTURE);
gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);

 playerFire[x].draw(gl,spriteSheets);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 217

 gl.glPopMatrix();
 gl.glLoadIdentity();

 }
 }
 }
 }

...

}

You need to take care of one last thing in this method. Once the current shot has moved
along the y axis more than 1 unit away from the character, it is time to fire the next shot.
Therefore, you need to test if the current shot is more than 1 y-axis unit away from the
character and, if so, set the properties of the next shot to be fired.

Keep in mind that shots fire successively, so by the time the last shot has fired, the first
shot should be off the screen and disabled. The first shot can then be fired again when
the last shot has passed the firing threshold.

public class SFGameRenderer implements Renderer{

...

 private void firePlayerWeapon(GL10 gl){
 for(int x = 0; x < 4; x++){
 if (playerFire[x].shotFired){
 int nextShot = 0;
 if (playerFire[x].posY > 4.25){
 playerFire[x].shotFired = false;
 }else{
 if (playerFire[x].posY> 2){
 if (x == 3){
 nextShot = 0;
 }else{
 nextShot = x + 1;
 }
 if (playerFire[nextShot].shotFired ==
false){
 playerFire[nextShot].shotFired =
true;
 playerFire[nextShot].posX =
SFEngine.playerBankPosX;
 playerFire[nextShot].posY =
1.25f;
 }
 }
 playerFire[x].posY +=
SFEngine.PLAYER_BULLET_SPEED;
gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 218

 gl.glScalef(.25f, .25f, 0f);
gl.glTranslatef(playerFire[x].posX, playerFire[x].posY, 0f);

gl.glMatrixMode(GL10.GL_TEXTURE);
gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);

 playerFire[x].draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 }
 }
 }
 }

...

}

Calling the firePlayerWeapons() Method
When you were working on the playable character and the enemies, you called methods
to move them, in increments, from the main game loop. The problem with following this
process for the player’s weapon is that you do not know if the player’s character is
currently valid and ready for firing. To get around this, you are going to call the
firePlayerWeapons() method from the movePlayer1() method, rather than calling it from
the main game loop. Doing so will ensure that you move the weapons on the screen only
when they are eligible to be moved.

public class SFGameRenderer implements Renderer{

...

 private void movePlayer1(GL10 gl){
 if(!player1.isDestroyed){
 switch (SFEngine.playerFlightAction){

...

 }
 firePlayerWeapon(gl);
 }
 }

...

}

Your player can now fire weapons at the enemies. However, the weapons do not
accomplish anything. If you were to compile and play the game right now, you would
see the shots simply fly through any enemies and continue until they reach the edge of

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 219

the screen. So too, the enemies would just continue in their descent, oblivious to any
shots fired.

To make your shots effective, you need to create some collision detection. In the next
section, you will create a method for simply 2-D collision detection that will be used to
determine if an enemy should be destroyed.

Implementing Collision Detection
Collision detection determines if two objects on the screen have touched and is
essential to any video game. In Star Fighter, you will use basic collision detection to
destroy enemies. In other games, collision detection is used to keep a player from
walking through walls, allow a player to pick up a new item, or even determine if an
enemy can see the player from an obscured view.

In this section, you are going to create a method that will track the position each enemy
on the screen, and each shot fired, to determine if any of the shots have hit any of the
enemies. In a 2-D game like Star Fighter, this is process is made easier because you
have to test on only two axes (you do not have to deal with the z axis in a 2-D game).

Applying Collision Damage
When a collision has been detected, you must apply the damage to the enemy that has
been hit. Each enemy can take a certain amount of damage before it is destroyed. To
track this damage, create a new method named applyDamage() in your SFEnemy() class.
This method will simply increment an int each time the specific enemy is hit. When the
int value reaches the predefined limit for that enemy, the isDestroyed flag will be flipped,
and the enemy will no longer be drawn to the screen.

package com.proandroidgames;

...

import javax.microedition.khronos.opengles.GL10;

public class SFEnemy {

 public float posY = 0f;
 public float posX = 0f;
 public float posT = 0f;
 public float incrementXToTarget = 0f;
 public float incrementYToTarget = 0f;
 public int attackDirection = 0;
 public boolean isDestroyed = false;
 private int damage = 0;

...

 public void applyDamage(){
 damage++;
 switch(enemyType){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 220

 case SFEngine.TYPE_INTERCEPTOR:
 if (damage == SFEngine.INTERCEPTOR_SHIELDS){
 isDestroyed = true;
 }
 break;
 case SFEngine.TYPE_SCOUT:
 if (damage == SFEngine.SCOUT_SHIELDS){
 isDestroyed = true;
 }
 break;
 case SFEngine.TYPE_WARSHIP:
 if (damage == SFEngine.WARSHIP_SHIELDS){
 isDestroyed = true;
 }
 break;
 }
 }

...

}

Every time that your collision detection method determines that a collision has been
made with an enemy ship, all you have to do is call the appyDamage() method of the
enemy, and it will take care of the rest. Once the isDestroyed flag on the enemy is set to
true, that enemy will no longer be processed in the moveEnemy() method or drawn to the
screen. Save and close SFEnemy.java.

Creating the detectCollisions() Method
With collision damage calculations taken care of, continue to edit your renderer by
creating a method named detectCollisions() in your SFGameRenderer.java file.

public class SFGameRenderer implements Renderer{
 private void initializePlayerWeapons(){
 for(int x = 0; x < 4; x++){
 sfweapon weapon = new sfweapon();
 playerFire[x] = weapon;
 }
 playerFire[0].shotFired = true;
 playerFire[0].posX = sfengine.playerBankPosX;
 playerFire[0].posY = 1.25f;
 }

...

 private void detectCollisions(){

 }

...

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 221

}

Within the detectCollisions() method, set up two loops, one to iterate through each
fired shot and one to iterate through each enemy that has not already been destroyed.
Remember, because the enemies start at random positions beyond the upper edge of
the screen, they can be valid (isDestroyed == false) without being in the player’s view.
This means you also need to test if the enemy is in view of the player as well as whether
or not it has been destroyed.

public class SFGameRenderer implements Renderer{

...

 private void detectCollisions(){
 for (int y = 0; y < 3; y ++){
if (playerFire[y].shotFired){
 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1; x++){
 if(!enemies[x].isDestroyed && enemies[x].posY <
4.25){

 }
 }
 }
 }

 }

...

}

Now comes the tricky part of the method. You know two pieces of information about
each enemy and each shot fired: the x and y positions. You also know dimension of the

vertices for the enemies and the shots; in this case, they are each 1 × 1 unit.

Detecting the Specific Collisions
Create an if statement to determine if a shot and an enemy collided based on their x
and y positions and their respective dimensions.

public class SFGameRenderer implements Renderer{

...

 private void detectCollisions(){
 for (int y = 0; y < 3; y ++){
if (playerFire[y].shotFired){
 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1; x++){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 222

 if(!enemies[x].isDestroyed && enemies[x].posY <
4.25){
 if ((playerFire[y].posY >=
enemies[x].posY - 1
&& playerFire[y].posY <= enemies[x].posY)
&& (playerFire[y].posX <= enemies[x].posX + 1
&& playerFire[y].posX >= enemies[x].posX - 1)){

 }
 }
 }
 }
 }
 }

...

...

}

If both the enemy and the shot being tested make it passed this if statement, they have
collided. When and enemy and a shot collide, you need to call the applyDamage()
method on the enemy to either add to the damage of that enemy or destroy it
completely.

Removing Void Shots
Once a shot has hit an enemy, regardless of whether the enemy is completely
destroyed, the shot needs to be taken off the screen so that it cannot hit any other
enemies. Set the shotFiredflag on the shot to false to negate the shot.

NOTE: Whether a shot hits an enemy or travels until it reaches the top on the screen, it will have
the same result; the next shot in the array can be activated. Therefore, in your collision method, if

a shot has hit an enemy, activate the next shot after you have deactivated the one that collided.

public class SFGameRenderer implements Renderer{

...

 private void detectCollisions(){
 for (int y = 0; y < 3; y ++){
if (playerFire[y].shotFired){
 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1; x++){
 if(!enemies[x].isDestroyed && enemies[x].posY <
4.25){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 223

 if ((playerFire[y].posY >=
enemies[x].posY - 1
&& playerFire[y].posY <= enemies[x].posY)
&& (playerFire[y].posX <= enemies[x].posX + 1
&& playerFire[y].posX >= enemies[x].posX - 1)){
 int nextShot = 0;
enemies[x].applyDamage();
 playerFire[y].shotFired = false;
 if (y == 3){
 nextShot = 0;
 }else{
 nextShot = y + 1;
 }
 if
(playerFire[nextShot].shotFired == false){

playerFire[nextShot].shotFired = true;

playerFire[nextShot].posX = SFEngine.playerBankPosX;

playerFire[nextShot].posY = 1.25f;
 }
 }
 }
 }
 }
 }
 }

...

...

}

That is a fairly simple version of 2-D collision detection that should get you well on your
path to creating an entertaining game. Now, all you have to do is call the collision
detection method from the main game loop.

...

public void onDrawFrame(GL10 gl) {
 loopStart = System.currentTimeMillis();
 try {
 if (loopRunTime < SFEngine.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(SFEngine.GAME_THREAD_FPS_SLEEP - loopRunTime);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 scrollBackground1(gl);
 scrollBackground2(gl);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 224

 movePlayer1(gl);
 moveEnemy(gl);

 detectCollisions();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE_MINUS_SRC_ALPHA);
 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));

}

...

Save and compile your game. You can now move your playable character and take out
enemies as they try to attack you. This is the final chapter that deals directly with 2-D
graphics and the Star Fighter game. In the next section, you will find some suggestions
for expanding on what you learned in the chapters that led you here before progressing
into the realm of 3-D gaming.

Expanding on What You Learned
If you want to really expand on your Star Fighter game, you can add several key
elements to your code that will make a major difference to the game play.

� Expand the weapons so that they are also fired from the scouts and
warships.

� Expand the collision detection to include shot impacts on the player
and collisions between the payer and enemies.

� Add a three- or four-sprite animation sequence of an explosion that
can be triggered when a ship is destroyed.

� Give the player more than one life to work with.

All of these items can easily be accomplished with the skills that you have obtained to
this point in this book.

Summary
In this chapter, you learned how to create weapons that can be autofired by the player.
You also added some basic 2-D collision detection to destroy enemies as they are hit by
the player.

In the next chapter, you will learn how to publish your game on the Android Marketplace
before moving on to 3-D game programming.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 225

But before we move on, please review the full source code for the keys files of Star
Fighter I have provided in the next section. I selected the files that have either had the
most changes to them, or have the most code. The code listings for these files are
provided so that you can compare your code against the code from the project.

This is designed to help you along should you have problems compiling or running your
project. Given that games can be complicate to create from scratch, and because some
code can be overlooked when you are following through the chapters, you may discover
that you cannot correctly run or compile the game the way it appears in the book. Being
the last chapter in which you will learn 2D gaming, this is a good spot to stop and review
your code.

Reviewing the Key 2-D Code
The first file that you should check— if you are having problems running your Star Fighter
game—is the SFEngine.java. This file contains settings that are used throughout the game,
and in almost every class in the project. You first created this file back in Chapter 3, and
continued to edit it thoughout Part 1. Therefore it is the most likely place that you may
have missed something. The source for the SFEngine.java is shown in the Listing 8–1.

Listing 8–1. SFEngine.java

package com.proandroidgames;

import android.content.Context;
import android.content.Intent;
import android.view.Display;
import android.view.View;

public class SFEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int MENU_BUTTON_ALPHA = 0;
 public static final boolean HAPTIC_BUTTON_FEEDBACK = true;
 public static final int SPLASH_SCREEN_MUSIC = R.raw.warfieldedit;
 public static final int R_VOLUME = 100;
 public static final int L_VOLUME = 100;
 public static final boolean LOOP_BACKGROUND_MUSIC = true;
 public static final int GAME_THREAD_FPS_SLEEP = (1000/60);
 public static float SCROLL_BACKGROUND_1 = .002f;
 public static float SCROLL_BACKGROUND_2 = .007f;
 public static final int BACKGROUND_LAYER_ONE = R.drawable.backgroundstars;
 public static final int BACKGROUND_LAYER_TWO = R.drawable.debris;
 public static final int PLAYER_BANK_LEFT_1 = 1;
 public static final int PLAYER_RELEASE = 3;
 public static final int PLAYER_BANK_RIGHT_1 = 4;
 public static final int PLAYER_FRAMES_BETWEEN_ANI = 9;
 public static final float PLAYER_BANK_SPEED = .1f;
 public static int CHARACTER_SHEET = R.drawable.character_sprite;
 public static int TOTAL_INTERCEPTORS = 10;
 public static int TOTAL_SCOUTS = 15;
 public static int TOTAL_WARSHIPS = 5;
 public static float INTERCEPTOR_SPEED = SCROLL_BACKGROUND_1 * 4f;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 226

 public static float SCOUT_SPEED = SCROLL_BACKGROUND_1 * 6f;
 public static float WARSHIP_SPEED = SCROLL_BACKGROUND_2 * 4f;
 public static final int TYPE_INTERCEPTOR = 1;
 public static final int TYPE_SCOUT = 2;
 public static final int TYPE_WARSHIP = 3;
 public static final int ATTACK_RANDOM = 0;
 public static final int ATTACK_RIGHT = 1;
 public static final int ATTACK_LEFT = 2;
 public static final float BEZIER_X_1 = 0f;
 public static final float BEZIER_X_2 = 1f;
 public static final float BEZIER_X_3 = 2.5f;
 public static final float BEZIER_X_4 = 3f;
 public static final float BEZIER_Y_1 = 0f;
 public static final float BEZIER_Y_2 = 2.4f;
 public static final float BEZIER_Y_3 = 1.5f;
 public static final float BEZIER_Y_4 = 2.6f;
 public static final int WEAPONS_SHEET = R.drawable.destruction;
 public static final int PLAYER_SHIELDS = 5;
 public static final int SCOUT_SHIELDS = 3;
 public static final int INTERCEPTOR_SHIELDS = 1;
 public static final int WARSHIP_SHIELDS = 5;
 public static final float PLAYER_BULLET_SPEED = .125f;
 /*Game Variables*/

 public static Context context;
 public static Thread musicThread;
 public static Display display;
 public static int playerFlightAction = 0;
 public static float playerBankPosX = 1.75f;
 /*Kill game and exit*/
 public boolean onExit(View v) {
 try
 {
 Intent bgmusic = new Intent(context, SFMusic.class);
 context.stopService(bgmusic);
 musicThread.stop();

 return true;
 }catch(Exception e){
 return false;
 }
 }
}

The next file (Listing 8–2) is the class used to create your weapons. This file was created
earlier and therefore may have been overlooked. Pay attention to the onDraw() method
when you are checking this file against yours – if you coppied the contents of this file
from a similar one, like SFBackground.java, you may have missed some changes.

Listing 8–2. SFWeapon.java

package com.proandroidgames;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

import javax.microedition.khronos.opengles.GL10;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 227

public class SFWeapon {

 public float posY = 0f;
 public float posX = 0f;
 public boolean shotFired = false;

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 private float texture[] = {
 0.0f, 0.0f,
 0.25f, 0.0f,
 0.25f, 0.25f,
 0.0f, 0.25f,
 };

 private byte indices[] = {
 0,1,2,
 0,2,3,
 };

 public SFWeapon() {

 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);

 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }

 public void draw(GL10 gl, int[] spriteSheet) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[1]);

 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 228

 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,
GL10.GL_UNSIGNED_BYTE, indexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }

}

The SFTextures file was also a relatively new file to the code, therefore it is possible for
problems to show up here as well. This code was used to expand update an existing
process for calling textures. If you were not paying attention it would have been very easy
to overlook an important part of this. When you are checking the code in Listing 8–3, be
sure to check that your arrays are instantiated correctly.

Listing 8–3. SFTextures.java

package com.proandroidgames;

import java.io.IOException;
import java.io.InputStream;

import javax.microedition.khronos.opengles.GL10;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;

public class SFTextures {

 private int[] textures = new int[2];

 public SFTextures(GL10 gl){

 gl.glGenTextures(2, textures, 0);

 }
 public int[] loadTexture(GL10 gl,int texture, Context context,int
textureNumber) {
 InputStream imagestream = context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {

 bitmap = BitmapFactory.decodeStream(imagestream);

 }catch(Exception e){

 }finally {
 //Always clear and close

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 229

 try {
 imagestream.close();
 imagestream = null;
 } catch (IOException e) {
 }
 }

 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[textureNumber - 1]);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
GL10.GL_CLAMP_TO_EDGE);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
GL10.GL_CLAMP_TO_EDGE);

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

 bitmap.recycle();

 return textures;
 }
}

If your files appear to match those in the previous listings, and you are still having
problems, then it is time to dive into the game loop.The SFGameRenderer.java contains
the main game loop for Star Fighter and is the most likely place for a problem to
happen.Unfortunately, being the largest file in the game, it is also the hardest file to
troubleshoot. Listing 8–4 shows the source code for the SFGameRenderer.java.Pay
special attention to the onDrawFrame() method.

Listing 8–4. SFGameRenderer.java

package com.proandroidgames;

import java.util.Random;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class SFGameRenderer implements Renderer{
 private SFBackGround background = new SFBackGround();
 private SFBackGround background2 = new SFBackGround();
 private SFGoodGuy player1 = new SFGoodGuy();
 private SFEnemy[] enemies = new SFEnemy[SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1];
 private SFTextures textureLoader;
 private int[] spriteSheets = new int[2];
 private SFWeapon[] playerFire = new SFWeapon[4];

 private int goodGuyBankFrames = 0;
 private long loopStart = 0;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 230

 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 private float bgScroll1;
 private float bgScroll2;

 @Override
 public void onDrawFrame(GL10 gl) {
 loopStart = System.currentTimeMillis();
 // TODO Auto-generated method stub
 try {
 if (loopRunTime < SFEngine.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(SFEngine.GAME_THREAD_FPS_SLEEP -
loopRunTime);
 }
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 scrollBackground1(gl);
 scrollBackground2(gl);

 movePlayer1(gl);
 moveEnemy(gl);

 detectCollisions();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE_MINUS_SRC_ALPHA);
 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));

 }
 private void initializeInterceptors(){
 for (int x = 0; x<SFEngine.TOTAL_INTERCEPTORS -1 ; x++){
 SFEnemy interceptor = new SFEnemy(SFEngine.TYPE_INTERCEPTOR,
SFEngine.ATTACK_RANDOM);
 enemies[x] = interceptor;
 }
 }
 private void initializeScouts(){
 for (int x = SFEngine.TOTAL_INTERCEPTORS -1;
x<SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS -1; x++){
 SFEnemy interceptor;
 if (x>=(SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS) / 2
){
 interceptor = new SFEnemy(SFEngine.TYPE_SCOUT,
SFEngine.ATTACK_RIGHT);
 }else{
 interceptor = new SFEnemy(SFEngine.TYPE_SCOUT,
SFEngine.ATTACK_LEFT);
 }
 enemies[x] = interceptor;
 }
 }

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 231

 private void initializeWarships(){
 for (int x = SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS -1;
x<SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS -1;
x++){
 SFEnemy interceptor = new SFEnemy(SFEngine.TYPE_WARSHIP,
SFEngine.ATTACK_RANDOM);
 enemies[x] = interceptor;
 }
 }
 private void initializePlayerWeapons(){
 for(int x = 0; x < 4; x++){
 SFWeapon weapon = new SFWeapon();
 playerFire[x] = weapon;
 }
 playerFire[0].shotFired = true;
 playerFire[0].posX = SFEngine.playerBankPosX;
 playerFire[0].posY = 1.25f;
 }
 private void moveEnemy(GL10 gl){
 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS + SFEngine.TOTAL_SCOUTS
+ SFEngine.TOTAL_WARSHIPS - 1; x++){
 if (!enemies[x].isDestroyed){
 Random randomPos = new Random();
 switch (enemies[x].enemyType){
 case SFEngine.TYPE_INTERCEPTOR:
 if (enemies[x].posY < 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 if (enemies[x].posY >= 3){
 enemies[x].posY -=
SFEngine.INTERCEPTOR_SPEED;
 }else{
 if (!enemies[x].isLockedOn){
 enemies[x].lockOnPosX =
SFEngine.playerBankPosX;
 enemies[x].isLockedOn = true;
 enemies[x].incrementXToTarget
=(float) ((enemies[x].lockOnPosX - enemies[x].posX)/ (enemies[x].posY /
(SFEngine.INTERCEPTOR_SPEED* 4)));
 }
 enemies[x].posY -=
(SFEngine.INTERCEPTOR_SPEED* 4);
 enemies[x].posX +=
enemies[x].incrementXToTarget;

 }

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 232

 gl.glTranslatef(enemies[x].posX,
enemies[x].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f, .25f , 0.0f);
 enemies[x].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;
 case SFEngine.TYPE_SCOUT:
 if (enemies[x].posY <= 0){
 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].isLockedOn = false;
 enemies[x].posT = SFEngine.SCOUT_SPEED;
 enemies[x].lockOnPosX =
enemies[x].getNextScoutX();
 enemies[x].lockOnPosY =
enemies[x].getNextScoutY();
 if(enemies[x].attackDirection ==
SFEngine.ATTACK_LEFT){
 enemies[x].posX = 0;
 }else{
 enemies[x].posX = 3f;
 }
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 if (enemies[x].posY >= 2.75f){
 enemies[x].posY -= SFEngine.SCOUT_SPEED;

 }else{
 enemies[x].posX =
enemies[x].getNextScoutX();
 enemies[x].posY =
enemies[x].getNextScoutY();
 enemies[x].posT += SFEngine.SCOUT_SPEED;

 }
 gl.glTranslatef(enemies[x].posX,
enemies[x].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.50f, .25f , 0.0f);
 enemies[x].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;
 case SFEngine.TYPE_WARSHIP:
 if (enemies[x].posY < 0){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 233

 enemies[x].posY = (randomPos.nextFloat()
* 4) + 4;
 enemies[x].posX = randomPos.nextFloat()
* 3;
 enemies[x].isLockedOn = false;
 enemies[x].lockOnPosX = 0;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 if (enemies[x].posY >= 3){
 enemies[x].posY -=
SFEngine.WARSHIP_SPEED;

 }else{
 if (!enemies[x].isLockedOn){
 enemies[x].lockOnPosX =
randomPos.nextFloat() * 3;
 enemies[x].isLockedOn = true;
 enemies[x].incrementXToTarget
=(float) ((enemies[x].lockOnPosX - enemies[x].posX)/ (enemies[x].posY /
(SFEngine.WARSHIP_SPEED* 4)));
 }
 enemies[x].posY -=
(SFEngine.WARSHIP_SPEED* 2);
 enemies[x].posX +=
enemies[x].incrementXToTarget;

 }
 gl.glTranslatef(enemies[x].posX,
enemies[x].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.75f, .25f , 0.0f);
 enemies[x].draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;

 }

 }
 }

 }

 private void movePlayer1(GL10 gl){
 if(!player1.isDestroyed){
 switch (SFEngine.playerFlightAction){
 case SFEngine.PLAYER_BANK_LEFT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 234

 gl.glScalef(.25f, .25f, 1f);
 if (goodGuyBankFrames <
SFEngine.PLAYER_FRAMES_BETWEEN_ANI && SFEngine.playerBankPosX > 0){
 SFEngine.playerBankPosX -=
SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f,
0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.75f,0.0f, 0.0f);
 goodGuyBankFrames += 1;
 }else if (goodGuyBankFrames >=
SFEngine.PLAYER_FRAMES_BETWEEN_ANI && SFEngine.playerBankPosX > 0){
 SFEngine.playerBankPosX -=
SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f,
0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.25f, 0.0f);
 }else{
 gl.glTranslatef(SFEngine.playerBankPosX, 0f,
0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 }
 player1.draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;
 case SFEngine.PLAYER_BANK_RIGHT_1:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 if (goodGuyBankFrames <
SFEngine.PLAYER_FRAMES_BETWEEN_ANI && SFEngine.playerBankPosX < 3){
 SFEngine.playerBankPosX +=
SFEngine.PLAYER_BANK_SPEED;
 gl.glTranslatef(SFEngine.playerBankPosX, 0f,
0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f,0.0f, 0.0f);
 goodGuyBankFrames += 1;
 }else if (goodGuyBankFrames >=
SFEngine.PLAYER_FRAMES_BETWEEN_ANI && SFEngine.playerBankPosX < 3){
 gl.glTranslatef(SFEngine.playerBankPosX, 0f,
0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.50f,0.0f, 0.0f);
 SFEngine.playerBankPosX +=
SFEngine.PLAYER_BANK_SPEED;
 }else{

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 235

 gl.glTranslatef(SFEngine.playerBankPosX, 0f,
0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 }
 player1.draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case SFEngine.PLAYER_RELEASE:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 goodGuyBankFrames = 0;
 player1.draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 default:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(SFEngine.playerBankPosX, 0f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 player1.draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 }
 firePlayerWeapon(gl);
 }

 }
 private void detectCollisions(){
 for (int y = 0; y < 3; y ++){
 if (playerFire[y].shotFired){
 for (int x = 0; x < SFEngine.TOTAL_INTERCEPTORS +
SFEngine.TOTAL_SCOUTS + SFEngine.TOTAL_WARSHIPS - 1; x++){
 if(!enemies[x].isDestroyed && enemies[x].posY <
4.25){
 if ((playerFire[y].posY >=
enemies[x].posY - 1
 && playerFire[y].posY <=
enemies[x].posY)
 && (playerFire[y].posX
<= enemies[x].posX + 1

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 236

 && playerFire[y].posX >=
enemies[x].posX - 1)){
 int nextShot = 0;
 enemies[x].applyDamage();
 playerFire[y].shotFired = false;
 if (y == 3){
 nextShot = 0;
 }else{
 nextShot = y + 1;
 }
 if
(playerFire[nextShot].shotFired == false){

playerFire[nextShot].shotFired = true;

playerFire[nextShot].posX = SFEngine.playerBankPosX;

playerFire[nextShot].posY = 1.25f;
 }
 }
 }
 }
 }
 }
 }
 private void firePlayerWeapon(GL10 gl){
 for(int x = 0; x < 4; x++){
 if (playerFire[x].shotFired){
 int nextShot = 0;
 if (playerFire[x].posY > 4.25){
 playerFire[x].shotFired = false;
 }else{
 if (playerFire[x].posY> 2){
 if (x == 3){
 nextShot = 0;
 }else{
 nextShot = x + 1;
 }
 if (playerFire[nextShot].shotFired ==
false){
 playerFire[nextShot].shotFired =
true;
 playerFire[nextShot].posX =
SFEngine.playerBankPosX;
 playerFire[nextShot].posY =
1.25f;
 }

 }
 playerFire[x].posY +=
SFEngine.PLAYER_BULLET_SPEED;
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 0f);
 gl.glTranslatef(playerFire[x].posX,
playerFire[x].posY, 0f);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 237

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);

 playerFire[x].draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();

 }
 }
 }
 }
 private void scrollBackground1(GL10 gl){
 if (bgScroll1 == Float.MAX_VALUE){
 bgScroll1 = 0f;
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 gl.glTranslatef(0f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,bgScroll1, 0.0f);

 background.draw(gl);
 gl.glPopMatrix();
 bgScroll1 +=SFEngine.SCROLL_BACKGROUND_1;
 gl.glLoadIdentity();

 }
 private void scrollBackground2(GL10 gl){
 if (bgScroll2 == Float.MAX_VALUE){
 bgScroll2 = 0f;
 }
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.5f, 1f, 1f);
 gl.glTranslatef(1.5f, 0f, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,bgScroll2, 0.0f);

 background2.draw(gl);
 gl.glPopMatrix();
 bgScroll2 +=SFEngine.SCROLL_BACKGROUND_2;
 gl.glLoadIdentity();
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 238

 // TODO Auto-generated method stub

 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub
 initializeInterceptors();
 initializeScouts();
 initializeWarships();
 initializePlayerWeapons();
 textureLoader = new SFTextures(gl);
 spriteSheets = textureLoader.loadTexture(gl, SFEngine.CHARACTER_SHEET,
SFEngine.context, 1);
 spriteSheets = textureLoader.loadTexture(gl, SFEngine.WEAPONS_SHEET,
SFEngine.context, 2);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 background.loadTexture(gl,SFEngine.BACKGROUND_LAYER_ONE,
SFEngine.context);
 background2.loadTexture(gl,SFEngine.BACKGROUND_LAYER_TWO,
SFEngine.context);
 }

}

Finally, Listings 8–5 and 8–6 show the last two key files in this project.The
SFGoodGuy.java and SFBadGuy.java contain the code for the player and enemy
classes.While you shouldn’t have noticed any problems in these files early on in the
writing of this game, it can never hurt to double check your work.

When looking at the SFEnemy.java, check the formulas for the Bezier curves.

Listing 8–5. SFGoodGuy.java

package com.proandroidgames;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

import javax.microedition.khronos.opengles.GL10;

public class SFGoodGuy {
 public boolean isDestroyed = false;
 private int damage = 0;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 239

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 private float texture[] = {
 0.0f, 0.0f,
 0.25f, 0.0f,
 0.25f, 0.25f,
 0.0f, 0.25f,
 };

 private byte indices[] = {
 0,1,2,
 0,2,3,
 };

 public void applyDamage(){
 damage++;
 if (damage == SFEngine.PLAYER_SHIELDS){
 isDestroyed = true;
 }

 }
 public SFGoodGuy() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);

 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }

 public void draw(GL10 gl, int[] spriteSheet) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[0]);

 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 240

 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_BYTE,
indexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }

 }

Listing 8–6. SFEnemy.java

package com.proandroidgames;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.util.Random;

import javax.microedition.khronos.opengles.GL10;

public class SFEnemy {

 public float posY = 0f;
 public float posX = 0f;
 public float posT = 0f;
 public float incrementXToTarget = 0f;
 public float incrementYToTarget = 0f;
 public int attackDirection = 0;
 public boolean isDestroyed = false;
 private int damage = 0;

 public int enemyType = 0;

 public boolean isLockedOn = false;
 public float lockOnPosX = 0f;
 public float lockOnPosY = 0f;

 private Random randomPos = new Random();

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 private float texture[] = {

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 241

 0.0f, 0.0f,
 0.25f, 0.0f,
 0.25f, 0.25f,
 0.0f, 0.25f,
 };

 private byte indices[] = {
 0,1,2,
 0,2,3,
 };
 public void applyDamage(){
 damage++;
 switch(enemyType){
 case SFEngine.TYPE_INTERCEPTOR:
 if (damage == SFEngine.INTERCEPTOR_SHIELDS){
 isDestroyed = true;
 }
 break;
 case SFEngine.TYPE_SCOUT:
 if (damage == SFEngine.SCOUT_SHIELDS){
 isDestroyed = true;
 }
 break;
 case SFEngine.TYPE_WARSHIP:
 if (damage == SFEngine.WARSHIP_SHIELDS){
 isDestroyed = true;
 }
 break;
 }
 }

 public SFEnemy(int type, int direction) {
 enemyType = type;
 attackDirection = direction;
 posY = (randomPos.nextFloat() * 4) + 4;
 switch(attackDirection){
 case SFEngine.ATTACK_LEFT:
 posX = 0;
 break;
 case SFEngine.ATTACK_RANDOM:
 posX = randomPos.nextFloat() * 3;
 break;
 case SFEngine.ATTACK_RIGHT:
 posX = 3;
 break;
 }
 posT = SFEngine.SCOUT_SPEED;

 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 8: Defend Yourself! 242

 textureBuffer.put(texture);
 textureBuffer.position(0);

 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }
 public float getNextScoutX(){
 if (attackDirection == SFEngine.ATTACK_LEFT){
 return (float)((SFEngine.BEZIER_X_4*(posT*posT*posT)) +
(SFEngine.BEZIER_X_3 * 3 * (posT * posT) * (1-posT)) + (SFEngine.BEZIER_X_2 * 3 * posT *
((1-posT) * (1-posT))) + (SFEngine.BEZIER_X_1 * ((1-posT) * (1-posT) * (1-posT))));
 }else{
 return (float)((SFEngine.BEZIER_X_1*(posT*posT*posT)) +
(SFEngine.BEZIER_X_2 * 3 * (posT * posT) * (1-posT)) + (SFEngine.BEZIER_X_3 * 3 * posT *
((1-posT) * (1-posT))) + (SFEngine.BEZIER_X_4 * ((1-posT) * (1-posT) * (1-posT))));
 }

 }
 public float getNextScoutY(){
 return (float)((SFEngine.BEZIER_Y_1*(posT*posT*posT)) +
(SFEngine.BEZIER_Y_2 * 3 * (posT * posT) * (1-posT)) + (SFEngine.BEZIER_Y_3 * 3 * posT *
((1-posT) * (1-posT))) + (SFEngine.BEZIER_Y_4 * ((1-posT) * (1-posT) * (1-posT))));
 }

 public void draw(GL10 gl, int[] spriteSheet) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[0]);

 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,
GL10.GL_UNSIGNED_BYTE, indexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

243

 Chapter

Publishing Your Game
You may have, by now, a pretty enjoyable 2-D game. Like most casual game
developers, you probably want to share your creation with the rest of the world. The way
to get your game into the hands, and onto the devices, of the masses is to publish it to
the Android Marketplace. This chapter is going to outline the process of publishing your
game on the Android Marketplace.

Before you can publish your masterpiece, you must do a few things to prepare your
code to be compiled for release. This chapter will walk you through the steps to ready
your game to be published. You must prepare your AndroidManifest file and sign and
align your code.

NOTE: There are many resources on the Net, including the Android Developer Forums, for
instructions on the actual upload process to the Marketplace. This chapter will not cover the

upload process, just the preparation steps that may be overlooked otherwise.

This is your last chance to work with the 2-D code that you’ve created thus far. In the
remainder of this book, you will be working on skills to create 3-D games. However, the
steps outlined herein will hold true no matter what kind of game or application you are
trying to publish.

Preparing Your Manifest
The first step to preparing your code to be published is to make sure that your
AndroidManifest file is in order. There are three key pieces of information that your
AndroidManifest must have to be able to be published. These key pieces of information
are

� versionCode

� versionName

� android:icon

9

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 9: Publishing Your Game 244

Open your AndroidManfest file to the XML view. The information that you must have in
your manifest is bolded as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.proandroidgames"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="10" />

 <application android:label="@string/app_name" android:icon="@drawable/sficon">
 <activity android:name=".StarfighterActivity"
 android:label="@string/app_name" android:screenOrientation="portrait">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="sfmainmenu" android:screenOrientation="portrait"></activity>
 <service android:name="sfmusic"></service>
 <activity android:name="sfgame" android:screenOrientation="portrait"></activity>

 </application>
</manifest>

If your AndroidManifest file does not have this information, you must add it before you
continue. The versionCode and versionName are used primarily by the Marketplace to
track what version of your game is being uploaded. This is helpful if you are publishing
upgraded version of your game.

Another key element in the preceding code is the specification of the icon. Your game
must have an icon to be displayed on the Android UI. The icon does not need to be
elaborate; it can even be the stock Android icon, but you do need one.

This information should already be in your manifest however, especially if you used
Eclipse to create your project. The next step is to sign, release compile, and align your
code.

Preparing to Sign, Align, and Release
All apps that are published to the Android Marketplace must be code signed. This allows
the Marketplace to identify you, and your game will not be accepted unless it is signed.
If you do not have a certificate from a certificate authority (CA), you can self-sign one.
The Android Marketplace will accept self-signed apps.

After signing your code, you need to align it. Aligning your code simply makes sure that
it is set at 4-bit boundaries. Having 4-bit boundaries is optimal for downloading on
mobile devices.

Luckily, if you are using Eclipse as your Android IDE, an easy wizard will take care of
both of these tasks at once. With your project open, go to File ➤ Export, as shown in
Figure 9–1. This will open the Export Wizard.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 9: Publishing Your Game 245

Figure 9–1. Opening the Export wizard

With the wizard open, select the Export Android Application option from the Android
destination, as shown in Figure 9–2.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 9: Publishing Your Game 246

Figure 9–2. Selecting the Export Android Application destination

TIP: Alternatively, you can get directly to this step by right-clicking the project in Eclipse and

choosing Export.

After making your selection, click the Next button. Eclipse will now test your project’s
AndroidManifest file to make sure that it meets the requirement discussed earlier—to be
signed and released. From the Project Checks screen shown in Figure 9–3, click the
Browse button.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 9: Publishing Your Game 247

Figure 9–3. The Project Checks window

You can now let the wizard check your project for errors in the manifest that would
prevent it from being able to be signed.

Checking the Readiness of AndroidManifest
When you click the Browse button, a smaller window will open that lists all of your
loaded projects. Select your project from this list, as shown in Figure 9–4.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 9: Publishing Your Game 248

Figure 9–4. Selecting the starfighter project

The export wizard will now check your code to make sure it is ready to be signed.
Assuming you have met the requirements, which include having an icon, a version code,
and a version name, then you should see the message “No errors found,” as shown in
Figure 9–5.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 9: Publishing Your Game 249

Figure 9–5. A successful check

When the check is finished, click the Next button to begin the signing process.

Creating the Keystore
The next screen of the wizard is the keystore selection, shown in Figure 9–6. If you have
an existing certificate keystore created—perhaps from a previous app that you uploaded
or a certificate that you purchased—select the “Use existing keystore option” to import
it.

However, if you are self-signing, you should select the “Create new keystore” option.
Selecting this option will walk you through the process of creating a new keystore.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 9: Publishing Your Game 250

Figure 9–6. The “Keystore selection” window

Select a valid location for your keystore file, and enter a password.

CAUTION: You should choose a location for your keystore that is both secure and backed up. You
must use the same keystore every time you update a game or app. Therefore, if you lose your

keystore, you will no longer be able to upload updates to this game.

Click the Next button to enter the Key Creation window, which is shown in Figure 9–7.
Here, you must enter all of the information that identifies you to the Marketplace.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 9: Publishing Your Game 251

Figure 9–7. The Key Creation window

Click the Next button after you have entered the information required for your keystore.
Eclipse will now generate a keystore for you that will be used in the next step of the
process to sign your app. On the next and final screen of the wizard, the “Destination
and key/certificate checks” window (see Figure 9–8), you will select your .apk file to be
signed.

Selecting the .apk file before it has really been created may seem a bit confusing, but
just follow along. Click the Browse button, and you should see starfighter.apk.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 9: Publishing Your Game 252

Figure 9–8. The final screen of the wizard

Click the Finish button to compile and sign your final game. During this process, the
code will be aligned into 4-bit boundaries, making it much easier for mobile devices to
download.

You are now ready to upload your creation to the Android Marketplace—much to envy
of your friends and colleagues. If your game development tastes extend more toward
the next gen rather than the retro, the remaining chapters of this book are what you
need. The last four chapters of this book will build on the skills that you’ve learned to
this point and add to them the ability to use OpenGL in a 3-D gaming environment.

Summary
In this chapter, you learned how to prepare your code for upload to the Android
Marketplace. You also used the Eclipse Export wizard to create a keystore and sign and
align your game as required by the Marketplace. In the next chapter, you will begin to
use the same skills that you learned in the preceding eight chapters to create a 3-D
game.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

 Part

Creating 3D Games
In Part 1 of this book you created your first 2D game for the Android platform. In Part 2
(Chapters 10-12) you will learn how these same skills can be used to create a 3D game.
While you won’t create the entire 3D game in Chapters 10-12, you will learn how the
skills you learned in Chapters 1-9 can be used to create a compelling 3D game. Finally,
at the end of Chapter 12, as at the end of Chapter 8, you will again be presented with
the source code for the key files of this part of the book. This will help you check your
work and strengthen your skills as a game developer.

II

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

 255

 Chapter

Blob Hunter : Creating 3-D
Games
In the first half of this book, you spent a good amount of time building your OpenGL ES
skills creating Star Fighter. Admittedly, Star Fighter is not going to have gamers beating
down your door to play it. However, what this game has done for you is far more
important. The skills that you honed while creating a 2-D, top-down, shooter game can
easily be translated in to the skills needed to create some stunning 3-D games.

For the remainder of this book, you will put together a 3-D environment that could be
used to create any number of compelling 3-D games. Let’s start by discussing what
differentiates a 2-D game from a 3-D game.

Comparing 2-D and 3-D Games
Visually, we all can tell the different between a 2-D game and a 3-D one. A 2-D game
looks flat, much like an animated cartoon, whereas a 3-D game will have the appearance
of multifaceted objects in a dynamic space. Are 2-D games irrelevant? Of course not.
With the advent of addictive mobile games, such as Angry Birds, and a dizzying array of
other iPhone, Android, and Facebook games, the 2-D game market is still alive and quite
well. You could continue to expand your 2-D games skills and create some amazing
games. However, if more-complex 3-D games are more to your liking, you will need to
begin by learning what is explained in the remaining chapters of this book.

When you were creating your 2-D game, Star Fighter, you created flat squares (out of
flat triangles). You then mapped a sprite onto the surface of that square to create your
characters. However, hold up a sheet of paper, and look at it. Even though it is flat, it is
still three-dimensional in your hand. You can turn it, rotate it, or bend it. Take six pieces
of paper, and create a cube. Now, the 3-D shape is much more defined, but all you
really changed was the number of flat pieces of paper and how they were arranged.

This is a very basic explanation of simple transition between the skills you learned in Star
Fighter and what you will need to begin building a new 3-D game—Blob Hunter. You

10

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 256

see, without even realizing it, you have been working in 3-D all along. You just flattened
out everything by neglecting any values for the z axis and telling OpenGL to render your
scene in 2-D.

As far as OpenGL is concerned, 2-D or 3-D, the games are the same in space. The
difference is in how you treat objects and how you tell OpenGL to render them. Rather
than creating flat squares that have sprites mapped to them, you need to create more
convincing complex polygons that become your characters and environments.

In this chapter, you are going to create a new Android project to hold Blob Hunter,
which will be a sandbox for you to learn some vital 3-D game development skills. You
will also set up the few files needed to begin your 3-D development.

Creating Your 3-D Project
In this section, you will begin creating the project that will be used through the rest of
this book. The process to create the 3-D project will mirror the one you used to create
the Star Fighter game project.

Following the same steps that you used in Chapter 2, create a new project named
blobhunter. This project will hold all of the examples from the remainder of this book.
You are not going to create another project as complete as Star Fighter, and you are
going to learn the secrets to converting your knowledge of working in 2-D into a 3-D
environment.

Once your new blobhunter project is created, fill it with some starter files. Although this
project is not going to have all the flash and menus of Star Fighter, you still some basic
files to launch your game.

You learned how to make menus and splash screens earlier in this book. Truth is, the
processes used to create those key parts of a game are going to remain the same
whether the game play is in 2-D or 3-D. Therefore, it does not warrant being covered
again here.

However, in the following sections, you will be adding four basic files to your project that
create and display the renderer. That is all that you will be making here. You will not
have any menus, or any graceful code killing routines as you did in Star Fighter.

BlobhunterActivity.java
The first file that you will need to create in your new blobhunter project is
BlobhunterActivity.java. In the Star Fighter project, StarfighterActivity.java
launched the splash screen, which, in turn, launched the main menu. However, since
you will not have those components here, BlobhunterActivity can simply launch
gameview.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 257

TIP: The majority of the code that you are going to see in this chapter should look very familiar to
you. Essentially, it is all taken from the Star Fighter project. The differences are that it has been

severely stripped down and renamed.

package com.proandroidgames;

import android.app.Activity;
import android.os.Bundle;

public class BlobhunterActivity extends Activity {
 /** Called when the activity is first created. */

 private BHGameView gameView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 gameView = new BHGameView(this);
 setContentView(gameView);
 BHEngine.context = this;
 }
 @Override
 protected void onResume() {
 super.onResume();
 gameView.onResume();
 }

 @Override
 protected void onPause() {
 super.onPause();
 gameView.onPause();
 }
}

Notice, in the highlighted sections, that this code references a class called BHGameView.
The BHGameView class extends GLSurfaceView and serves the same purpose as the
SFGameView in Star Fighter. The previous code will not compile until the BHGameView is
created in the next section.

BHGameView
The code to create the BHGameView class is very simple and should look like this:

package com.proandroidgames;

import android.content.Context;
import android.opengl.GLSurfaceView;

public class BHGameView extends GLSurfaceView {
 private BHGameRenderer renderer;

 public BHGameView(Context context) {

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 258

 super(context);

 renderer = new BHGameRenderer();

 this.setRenderer(renderer);

 }

}

Once again, notice that, in the highlighted sections, you are referencing another class.
BHGameRenderer is the game loop for this project and will hold the majority of the code.

BHGameRenderer
Now, create a new file class named BHGameRenderer.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class BHGameRenderer implements Renderer{

 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 @Override
 public void onDrawFrame(GL10 gl) {
 loopStart = System.currentTimeMillis();
 try {
 if (loopRunTime < BHEngine.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(BHEngine.GAME_THREAD_FPS_SLEEP -
loopRunTime);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

 gl.glViewport(0, 0, width,height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 259

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST);
 gl.glDisable(GL10.GL_DITHER);
 }

}

Again, if you look at the code for the BHGameRenderer, you will notice that it is just a
stripped down version of what you used for Star Fighter. This is going to be just enough
code to really get you going in 3-D game development.

BHEngine
The last file that you need to create to establish your project is BHEngine. In the Star
Fighter project, you created the SFEngine file that held all of the global constants,
variables, and methods for your game. The same file needs to be created in the Blob
Hunter project to hold any game-engine-related code.

package com.proandroidgames;
import android.content.Context;
import android.view.Display;

public class BHEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int GAME_THREAD_FPS_SLEEP = (1000/60);
 /*Game Variables*/

 public static Context context;
}

That is it. You should now have enough code to get your project off the code. However,
the code—and the project it is contained within—does not really do anything yet. Let’s
create a small 3-D test to show off what this new project can do.

Creating a 3-D Object Test
In this section, you are going to take the Blob Hunter project that you set up in the
previous section and add some code to it to generate a 3-D test. You are going to use
one of the sprite images from Star Fighter to create a quick image that will rotate around
the player.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 260

Start by taking the image of the scout, shown in Figure 10–1, and adding it to the
drawable-nodpi folder in Blob Hunter’s project.

Figure 10–1. The Scout image

With the image added to your project, create a constant for it in the BHEngine class.

NOTE: The steps to create this 3-D test should be very familiar to you and fairly fresh in your
mind from being in the previous chapters. Therefore, there will not be as much explanation of
some of the basic (previously covered) technologies. However, if something does not make

sense, try going back to the previous chapters.

Creating a Constant
Open the BHEngine.java file, and add the following highlighted line of code:

package com.proandroidgames;

import android.content.Context;
import android.view.Display;

public class BHEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int GAME_THREAD_FPS_SLEEP = (1000/60);
 public static final int BACKGROUND = R.drawable.scout;
 /*Game Variables*/

 public static Context context;
 public static Display display;
}

You are now going to create a flat square, exactly like you did for Star Fighter and then
map this scout image to it as a texture.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 261

Creating the BHWalls Class
Create a new class in your project called BHWalls. The BHWalls class is going to be used
in future chapters to create walls, but it will serve here as a way to create a flat square.
All of the code for the BHWalls class is from the SFBackground class that you created for
Star Fighter; nothing has changed.

package com.proandroidgames;

import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

import javax.microedition.khronos.opengles.GL10;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;

public class BHWalls {

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;

 private int[] textures = new int[1];

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 private float texture[] = {
 0.0f, 0.0f,
 1.0f, 0f,
 1f, 1.0f,
 0f, 1f,
 };

 private byte indices[] = {
 0,1,2,
 0,2,3,
 };

 public BHWalls() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 262

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);

 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }

 public void draw(GL10 gl) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glFrontFace(GL10.GL_CCW);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,
GL10.GL_UNSIGNED_BYTE, indexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }

 public void loadTexture(GL10 gl,int texture, Context context) {
 InputStream imagestream =
context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {
 bitmap = BitmapFactory.decodeStream(imagestream);
 }catch(Exception e){

 }finally {
 try {
 imagestream.close();
 imagestream = null;
 } catch (IOException e) {
 }
 }

 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S, GL10.GL_REPEAT);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T, GL10.GL_REPEAT);

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 263

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

 bitmap.recycle();
 }
}

Now that you have a class created to build your object, you are going to instantiate it in
the game loop.

Instantiating the BHWalls Class
As you are creating the instantiation of the BHWalls, you will also create two floats.
These are going to be used to move the image of the ship around in the 3-D space.

NOTE: Just to be clear, you are not creating a 3-D ship with this code. You will only be taking
one of the images from the last project and rotating it through 3-D space—something that could

not have been done in Star Fighter.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class BHGameRenderer implements Renderer{
 private BHWalls background = new BHWalls();
 private float rotateAngle = .25f;
 private float rotateIncrement = .25f;

 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 @Override
 public void onDrawFrame(GL10 gl) {
 loopStart = System.currentTimeMillis();
 try {
 if (loopRunTime < BHEngine.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(BHEngine.GAME_THREAD_FPS_SLEEP -
loopRunTime);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 264

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

 gl.glViewport(0, 0, width,height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST);
 gl.glDisable(GL10.GL_DITHER);
 }

}

The BHWalls class has been instantiated, and it is time to call the loadTexture() method.

Mapping the Image
In this section, you will use the loadTexture() method, which was introduced in the Star
Fighter game. Recall that the loadTexture() method will map the image onto the
vertices of the BHWalls.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class BHGameRenderer implements Renderer{
 private BHWalls background = new BHWalls();
 private float rotateAngle = .25f;
 private float rotateIncrement = .25f;

 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 @Override
 public void onDrawFrame(GL10 gl) {
 loopStart = System.currentTimeMillis();
 try {
 if (loopRunTime < BHEngine.GAME_THREAD_FPS_SLEEP){

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 265

 Thread.sleep(BHEngine.GAME_THREAD_FPS_SLEEP -
loopRunTime);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

 gl.glViewport(0, 0, width,height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST);
 gl.glDisable(GL10.GL_DITHER);
 background.loadTexture(gl,BHEngine.BACKGROUND, BHEngine.context);
 }

}

At this point, you are probably wondering where the big differences are between using
OpenGL ES for 2-D and 3-D, because so far, all of the code that you have used has
been from the 2-D Star Fighter project.

The major difference between how OpenGL deals with 2-D and how it deals with 3-D
boils down to how you tell the system to render your world. In the Star Fighter game,
you told Open GL to render your world as a flattened 2-D environment using the
glOrthof() method.

The glOrthof() method discards the meaning of the z axis value. That is, when you’re
using glOrthof(), everything is rendered the same size, regardless of its distance from
the player.

To render your objects in 3-D, you are going to use gluPerspective(), which is
discussed next.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 266

Using gluPerspective()
The gluPerspective() method will take into account the object’s distance from the
player on the z axis and then render the object with the correct size and perspective
relative to its position.

The parameters for the gluPerspective() method are slightly different from those of
glOrthof(). To call gluPerspective(), you need to pass it a valid instance of GL10, a
viewing angle, an aspect, and a near and a far z axis clipping plane.

gluPerspective(gl10, angle, aspect, nearz, farz)

The angle that is passed to gluPerspective() specifies the viewing angle that you want
OpenGL to render; anything that falls outside that viewing angle will not be seen. The
aspect parameter is a float of width / height. Finally, the near and far z clipping planes
tell OpenGL where to stop rendering. Anything closer than the near z plane or farther
away than the far z plane will be clipped from the rendering.

In the onSurfaceChanged() method of BHGameRender, you are going to add the call to
gluPerspective().

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class BHGameRenderer implements Renderer{
 private BHWalls background = new BHWalls();
 private float rotateAngle = .25f;
 private float rotateIncrement = .25f;

 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 @Override
 public void onDrawFrame(GL10 gl) {
 loopStart = System.currentTimeMillis();
 try {
 if (loopRunTime < BHEngine.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(BHEngine.GAME_THREAD_FPS_SLEEP -
loopRunTime);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));

 }

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 267

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

 gl.glViewport(0, 0, width,height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 GLU.gluPerspective(gl, 45.0f, (float) width / height, .1f, 100.f);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST);
 gl.glDisable(GL10.GL_DITHER);
 background.loadTexture(gl,BHEngine.BACKGROUND, BHEngine.context);
 }
}

In the next section, you will draw the background plane using a method called
drawBackground().

Creating the drawBackground() Method
You need a new method that will draw the BHWalls vertices to the screen and move
them around to show off the 3-D rendering of OpenGL. Now, create a drawBackground()
method that will use the glRotatef() method to rotate the image of the scout around
the player on the z axis.

The OpenGL method glRotatef() takes four parameters. The first specifies the angle of
rotation. The second, third, and fourth parameters are flags for the x, y, and z axes,
indicating to which axis you want to apply the angle of rotation.

The following code shows the drawBackground() method in context:

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class BHGameRenderer implements Renderer{
 private BHWalls background = new BHWalls();
 private float rotateAngle = .25f;
 private float rotateIncrement = .25f;

 private long loopStart = 0;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 268

 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 @Override
 public void onDrawFrame(GL10 gl) {
 loopStart = System.currentTimeMillis();
 try {
 if (loopRunTime < BHEngine.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(BHEngine.GAME_THREAD_FPS_SLEEP -
loopRunTime);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));

 }

 private void drawBackground(GL10 gl){

 GLU.gluLookAt(gl, 0f, 0f, 5f, 0f, 0f, 0f, 0f, 1f, 0f);
 gl.glRotatef(rotateAngle, 0.0f, 1.0f, 0.0f);
 gl.glTranslatef(0.0f, 0.0f, -3f);

 background.draw(gl);
 rotateAngle += rotateIncrement;

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

 gl.glViewport(0, 0, width,height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 GLU.gluPerspective(gl, 45.0f, (float) width / height, .1f, 100.f);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST);
 gl.glDisable(GL10.GL_DITHER);
 background.loadTexture(gl,BHEngine.BACKGROUND, BHEngine.context);
 }
}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 269

Notice that there is a new method call in this example. The gluLookAt() call tells the
“camera” where to look in the world. If you have ever worked with 3-D rendering
software such as Maya or 3-D Studio Max, you may be familiar with the concept having
a camera that acts as the viewer of the scene when it is rendered. OpenGL does not
really have a camera as a separate object. However, the gluLookAt() method serves as
a way to point the rendering to look at a specific location in the world.

The gluLookAt() method takes a valid GL10 object plus three sets of three parameters.
These three sets of three parameters are the x, y, and z values for the eye (where the
renderer is looking); the x, y, and z values for the center of “camera” (where the renderer
is located in the world); and the x, y, and z positions indicating which axis is up. As
written in this example, you are telling the “camera” to look at a point that is located at
0x, 0y, and 5z, to center itself on the 0x, 0y, and 0z point, and that the direction up is
toward 1y.

Adding the Finishing Touches
Now, just call the drawBackground() method, and compile your game. You should see an
image of a scout ship rotate in front of and then behind you in perspective.

package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class BHGameRenderer implements Renderer{
 private BHWalls background = new BHWalls();
 private float rotateAngle = .25f;
 private float rotateIncrement = .25f;

 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 @Override
 public void onDrawFrame(GL10 gl) {
 loopStart = System.currentTimeMillis();
 try {
 if (loopRunTime < BHEngine.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(BHEngine.GAME_THREAD_FPS_SLEEP -
loopRunTime);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 drawBackground(gl);

 loopEnd = System.currentTimeMillis();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 10: Blob Hunter: Creating 3-D Games 270

 loopRunTime = ((loopEnd - loopStart));

 }

 private void drawBackground(GL10 gl){

 GLU.gluLookAt(gl, 0f, 0f, 5f, 0f, 0f, 0f, 0f, 1f, 0f);
 gl.glRotatef(rotateAngle, 0.0f, 1.0f, 0.0f);
 gl.glTranslatef(0.0f, 0.0f, -3f);

 background.draw(gl);
 rotateAngle += rotateIncrement;

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

 gl.glViewport(0, 0, width,height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 GLU.gluPerspective(gl, 45.0f, (float) width / height, .1f, 100.f);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST);
 gl.glDisable(GL10.GL_DITHER);
 background.loadTexture(gl,BHEngine.BACKGROUND, BHEngine.context);
 }
}

In the next chapter, you are going to create the 3-D environment for Blob Hunter. It will
be a corridor-based environment, much like the early Doom and Quake FPS games.

Summary
In this chapter, you created the project for the Blob Hunter 3-D game. You also learned
the differences in how OpenGL ES renders 2-D versus 3-D environments. The key to
creating a 3-D environment from a 2-D one is all in the way you tell OpenGL to render
your objects. OpenGL make the process of moving from 2-D to 3-D gaming very easy
for you by allowing you to use the same vertices and textures and only change a few
lines of code. This process was clarified when you created the quick demonstration of
an object rotating in 3-D space.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

271

 Chapter

Creating an Immersive
Environment
In the previous chapter, you learned how to take some of your new 2-D game
development skills and apply them to a 3-D game. You learned how OpenGL ES renders
objects in 3-D and how to move these objects around to get a 3-D effect.

In this chapter, you are going to build an environment for your 3-D game. Because this is
a primer on 3-D development, you will learn how to create the standard of all FPS
games—the corridor. You will use the techniques you learned in earlier chapters to
create an L-shaped corridor for your player to navigate.

Finally, in the last chapter of this book, you will learn how your players can navigate
through this corridor and implement some collision detection to keep them from going
through the walls.

Let’s start with the BHWalls class that you created in the Chapter 10.

Using the BHWalls class
In the previous chapter, you created a small 3-D test. As part of this test, you created a
BHWalls class that creates a square wall shape and applies a texture to it. How does this
apply to the 3-D game that you are going to create? Let’s examine a 3-D world to find
out. In this section, you will learn how to move from the small BHWalls test in the last
chapter to a 3-D corridor.

Look around you right now; what do you see? Step outside; look up, and look down.

Chances are, if you were indoors when you looked around, you saw some walls. You
could not see into the rooms or environments beyond those walls because the structure
of the walls blocked your view. You may know that you are in a house or large building,
but your eyes are only seeing the unobstructed portions of the environment.

11

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 272

The same applies if you move outside; yes, the environment is much larger and you can
see much more, but what you see is still a finite space. Something always ends up
restricting your view—be it a house, trees, or even the ground you are standing on.

Move your attention now to a computer environment. Until you place objects into your
environment, your players will have an unobstructed 360-degree view of the world. It is
up to you to restrict that view to the specific area that you want them to experience. In
Star Fighter, the 2-D game you created earlier in this book, it was easy to control the
player’s view of the world. You created a single, static view of a scene. All of the action
of the game took place in this one view.

With 3-D games, controlling what the players see is a little harder, because the players
are in control of their view of the world. Therefore, you must place objects and create
environments in such a way that you control what the players have access to see, even
though they will be in control of how the see it.

In the early days of 3-D first-person gaming, this control over the play’s environmental
view was accomplished using corridors. Think back to some of the most popular early
first-person shooters like Doom, Quake, and Castle Wolfenstein. They all used rooms
and corridors to guide you where you to where you needed to go, yet let you feel as
though you were in a much larger, free-roaming environment.

You already have all of the skills needed to create an effective 3-D corridor. No matter
how long any single corridor is, it can be built from a series of walls. In Chapter 10, you
built a wall and moved it around the player. You could simply build 5, 10, or 15 more of
these walls and place them in specific locations to create a long corridor with turns.

Creating a Corridor from Multiple BHWalls Instances
Let’s take a look at what exactly BHWalls creates.

...

private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

...

This code segment is a piece of the BHWalls class—a very important piece that you
should remember from Star Fighter. This array represents one square that can be
rendered out to the screen. While this square could theoretically represent anything, for
you, it is a wall.

You can render multiple walls, and then using glTranslatef(), you can move each wall
into place. The code would look something like this:

...

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 273

 gl.glTranslatef(0.0f, 0.0f, 0f);
 gl.glRotatef(45.0f, 0.0f,1.0f, 0.0f);
 corridor.draw(gl);

 gl.glTranslatef(0.0f, 0.0f, 1f);
 gl.glRotatef(45.0f, 0.0f,1.0f, 0.0f);
 corridor.draw(gl);

 gl.glTranslatef(-1.0f, 0.0f, 0f);
 gl.glRotatef(45.0f, 0.0f,1.0f, 0.0f);
 corridor.draw(gl);

 gl.glTranslatef(-1.0f, 0.0f, 1f);
 gl.glRotatef(45.0f, 0.0f,1.0f, 0.0f);
 corridor.draw(gl);

 gl.glTranslatef(0.0f, 0.0f, 0f);
 gl.glRotatef(0.0f, 0.0f,0.0f, 0.0f);
 corridor.draw(gl);

...

While this is more psudeocode than anything you could use directly in your game, you
can see how it would be possible to create a corridor by rendering several walls and
using OpenGL to translate and rotate them; you could piece together a corridor.

However, this method has its drawbacks. First, it is time consuming. It would take a long
time to create all the walls needed to build a corridor of any substantial size. Second,
with that many separate objects to keep track of, messing up something would be very
easy. You could lose track of which wall goes where and turn something the wrong way.
Finally, with that many objects for OpenGL to create, move, and render, your game
would not be as efficient as it could be.

There is a better way to create the game environment. You could build the entire
corridor at one time, with one object.

Using the BHCorridor Class
In this section, you are going to create a new class, BHCorridor. The BHCorridor class
will be responsible for creating a single corridor from multiple polygons. You will then be
able to treat this corridor as a single object.

Being able to treat the corridor as a single object will come in very handy in the next,
and final, chapter, where you will allow the player to navigate the corridor. This will
require moving objects around, which is much easier when you have fewer objects to
keep track of.

Let’s build the BHCorridor class. We are going to walk through the full class, because
there will be some differences between BHCorridor and the BHWalls class that you used
in the previous chapter.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 274

Building the BHCorridor Class
In this section, you will begin to build the BHCorridor class. This class will be used to
create a full 3-D corridor at once, rather than piecing one together from a number of
separate walls. To begin, create a new class in your Blob Hunter project called
BHCorridor.

package com.proandroidgames;

public class BHCorridor {

}

Next, you need to set up your arrays.

package com.proandroidgames;

import java.nio.FloatBuffer;

public class BHCorridor {
 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;

 private int[] textures = new int[1];

 private float vertices[] = {

 };

 private float texture[] = {

 };

}

In the BHWalls class, and even in SFBackground from earlier in this book, the vertices[]
array would hold 12 values, something like this:

private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

These values represent the x, y, and z axes coordinates of the corners of the square
(more precisely, the corners of two triangles that form a square).

You are going to build on this logic by feeding into the array all of the coordinates
needed to build the entire corridor at one time (rather than instantiating multiple wall
objects and pasting them together). The corridor that you are going to build will be L
shaped, as shown in Figure 11–1.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 275

Figure 11–1. The finished corridor shape

The image in Figure 11–1 illustrates the shape of the corridor that you will be creating.
An arbitrary texture has been added in this image to help you see the shape. Notice that
the corridor is L shaped with a bend to the left and is built from four main wall sections.
These sections have been labeled A, B, C, and D, and we will be referring to these
segment letters as we build the walls.

Building Multiple Walls with the vertices[] Array
Let’s set up the vertices[] array to create multiple walls. You can start with wall
segment A. This is a flat wall that is facing a player standing at the end of the corridor.

private float vertices[] = {
 -2.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 -2.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,

Next, you will add the vertex for wall segment B. This segment connects with A on the
right-hand side and extends toward the player on the z axis.

private float vertices[] = {
 -2.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 -2.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,

 1.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 5.0f,
 1.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 5.0f,

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 276

Now, add the vertex for wall segment C. This wall segment is opposite segment B and
also extends toward the player.

private float vertices[] = {
 -2.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 -2.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,

 1.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 5.0f,
 1.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 5.0f,

 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 5.0f,
 0.0f, 1.0f, 1.0f,
 0.0f, 1.0f, 5.0f,

Finally, add the vertex for wall segment D. This is the segment that is opposite segment
A and extends from the end to segment C toward the left-hand side of the screen.

private float vertices[] = {
 -2.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 -2.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,

 1.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 5.0f,
 1.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 5.0f,

 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 5.0f,
 0.0f, 1.0f, 1.0f,
 0.0f, 1.0f, 5.0f,

 -2.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 1.0f,
 -2.0f, 1.0f, 1.0f,
 0.0f, 1.0f, 1.0f,
};

That is it. Those are all of the vertices needed to build the corridor.

NOTE: Because you are working in Java, it is not outside the realm of possibility to store large
arrays of data like this in other .java files. You can then load these file and read the arrays out

of them.

With the vertices[] array complete, you can create the texture[] array. Like the
vertices[] array, the texture[] array will require some minor tweaking before it can be
used to apply a texture to the corridor.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 277

Creating the texture[] Array
In the previous chapters, you built a texture[] array that looked something like this:

private float texture[] = {
 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,
};

The texture[] array contains the mapping points that tell OpenGL how the texture fits
on the vertices. Since you have created a new vertices[] array with four distinct sets of
vertices, you also need a texture[] array that will contain for sets of mapping points:
one for each set of vertices.

Try not to get caught up in figuring out how to map the texture to the corridor walls
without a z axis coordinate. The mapping points in the texture[] array correspond to
the corners of the texture not the wall vertices. Therefore, since you will be mapping the
entire texture to each wall, the four sets of texture mapping points will be identical.

private float texture[] = {
 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

};

Now, your BHCorridor class should look like this:

package com.proandroidgames;

import java.nio.FloatBuffer;

public class BHCorridor {
 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;

 private int[] textures = new int[1];

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 278

 private float vertices[] = {

 -2.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 -2.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,

 1.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 5.0f,
 1.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 5.0f,

 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 5.0f,
 0.0f, 1.0f, 1.0f,
 0.0f, 1.0f, 5.0f,

 -2.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 1.0f,
 -2.0f, 1.0f, 1.0f,
 0.0f, 1.0f, 1.0f,

 };

 private float texture[] = {

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 };

}

Next, add a constructor that will create your buffers, just like you did for BHWalls and
SFBackground.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 279

public BHCorridor() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);
}

After that, add the loadTexture() method. There are no major changes here either, so
no further explanation should be needed (if you are unsure how the loadTexture()
method works, check back in Chapter 4 for a detailed explanation).

public void loadTexture(GL10 gl,int texture, Context context) {
 InputStream imagestream = context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {

 bitmap = BitmapFactory.decodeStream(imagestream);

 }catch(Exception e){

 }finally {

 try {
 imagestream.close();
 imagestream = null;
 } catch (IOException e) {
 }
 }

 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S, GL10.GL_REPEAT);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T, GL10.GL_REPEAT);

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

 bitmap.recycle();
}

Finally, in the next section, you’ll create the draw() method. Remember, the draw()
method is called by the renderer to draw out the corridor. There are some changes in
the BHCorridor.draw() to account for the multiple sets of vertices in the vertices[]
array.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 280

Creating the draw() Method
You are going to use the glDrawArrays() method with pointers to the wall segment
vertices. Take a look at your vertices[] array. The array is visually broken up into four
sets of four vertices—one for each corner of a wall segment. You need to tell OpenGL
where each wall segment begins and ends. Therefore, you will pass into glDrawArrays()
the start point and the number of vertices for each wall segment.

The glDrawArrays() call for wall segment A will look like this:

gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0,4);

This line tells OpenGL to start at position 0 in the array and read four vertices. By this
logic, wall segment two would start at position 4 in the array and extend for another four
vertices, and so on.

With the call to glDrawArrays() being the only difference in the draw() method for the
BHCorridor, your method should look like this:

public void draw(GL10 gl) {

 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
 gl.glFrontFace(GL10.GL_CCW);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0,4);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 4,4);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 8,4);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 12,4);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);

}

Your finished BHCorridor class is shown in Listing 11–1.

Listing 11–1. BHCorridor.java

package com.proandroidgames;

import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 281

import javax.microedition.khronos.opengles.GL10;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;

public class BHCorridor {
 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;

 private int[] textures = new int[1];

 private float vertices[] = {

 -2.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 -2.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,

 1.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 5.0f,
 1.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 5.0f,

 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 5.0f,
 0.0f, 1.0f, 1.0f,
 0.0f, 1.0f, 5.0f,

 -2.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 1.0f,
 -2.0f, 1.0f, 1.0f,
 0.0f, 1.0f, 1.0f,

 };

 private float texture[] = {

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 282

 1f, 1.0f,

 };

 public BHCorridor() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);
 }

 public void draw(GL10 gl) {

 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
 gl.glFrontFace(GL10.GL_CCW);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0,4);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 4,4);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 8,4);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 12,4);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);

 }

 public void loadTexture(GL10 gl,int texture, Context context) {
 InputStream imagestream =
context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {

 bitmap = BitmapFactory.decodeStream(imagestream);

 }catch(Exception e){

 }finally {

 try {
 imagestream.close();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 283

 imagestream = null;
 } catch (IOException e) {
 }
 }

 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
GL10.GL_REPEAT);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
GL10.GL_REPEAT);

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

 bitmap.recycle();
 }

}

Adding a Wall Texture
With the BHCorridor class created and able to map a texture to the walls, it is time to
add a nice wall texture to replace the temporary one shown in Figure 11–1. Figure 11–2
illustrates the wall texture that you are going to map to the walls of your corridor.

Figure 11–2. The wall texture

Begin by adding this image to your drawable.nodpi folder. Then, add a reference to it in
BHEngine as follows:

public static final int BACK_WALL = R.drawable.walltexture256;

Your finished walls will appear as shown in Figure 11–3 when this new texture is applied.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 284

Figure 11–3. The textured walls

In the next section, you are going to instantiate a copy of the BHCorridor class and draw
it to the screen with the new texture that you just added to Blob Hunter.

Calling BHCorridor
As in the Star Fighter project from earlier in this book, all of Blob Hunter’s rendering is
performed in the game rendering class. In Chapter 10, you created this class,
BHGameRenderer. In this section, you are going to add a drawCorridor() method that will
be called during the game loop. Open the BHGameRenderer.java file, and add a new
instance of the BHCorridor, as follows:

private BHCorridor corridor = new BHCorridor();

Now, you can create a drawCorridor() method. The method is going to set up the
gluLookAt() (see Chapter 10 for a description of how this works), and it is going to
rotate the corridor on its x and y axes to appear as in Figure 11–3.

private void drawCorridor(GL10 gl){

 GLU.gluLookAt(gl, 0f, 0f, 5f, 0f, 0f, 0, 0, 1, 0);
 gl.glRotatef(40.0f, 1.0f,0.0f, 0.0f);
 gl.glRotatef(20.0f, 0.0f,1.0f, 0.0f);
 gl.glTranslatef(0.0f, 0.0f, -3f);

 corridor.draw(gl);

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 11: Creating an Immersive Environment 285

Again, all of this code should look very familiar. By this point in this book, there should
be very little new code. You are just taking the code and skills that you learned in
created 2-D games and adapting them to a 3-D environment.

Summary
In this chapter, you learned how to create a multipolygon object—the corridor—in a
single call. Then, you added a texture to the corridor and rendered it to the screen using
BHGamerRenderer. This is a sharp peak in your learning curve, because it teaches you
how to manage some very complex objects. Almost any 3-D environment that you can
think of, from a vast cityscape to a complex maze, can be built using this technique.

In the final chapter of this book, Chapter 12, you’ll create the controls needed to
navigate through this 3-D corridor, including collision detection to ensure the player
does not walk though your walls.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

287

 Chapter

Navigating the 3-D
Environment
You have reached the final chapter of your adventures in learning Android game
development. In this book, you started from nothing and created a 2-D scrolling shooter.
From the skills learned in creating that game, you were able to create the environment
for a 3-D game. Although this book does not cover using all of the skills you have
acquired or step you through creating an entire 3-D game, you will learn enough of the
basics that hopefully to use that logic to finish the game. In this chapter, you will learn
what differences await you when you are trying to create a control system to navigate
the 3-D corridor.

When you created a control system for the 2-D Star Fighter game, the movement was
simple. The player could only move left or right. In Blob Hunter, the player should have
the freedom to move 360 degrees on the z plane. Let’s take a look at what kind of
challenges that will pose for you.

At the end of this chapter, I have provided a listing of the key files for the 3D project.
These files were chosen because of their complexity, number of changes, or proclivity
for causing a problem when you compile your project. If you are having trouble running
your 3D project at the end of this chapter, please check you files against those listed
after the Summary.

Creating the Control Interface
In this section, you are going to create the control interface, the means by which your
player interacts with your game.

In Star Fighter, the control interface was a simple left and right motion. However, in a 3-D
game, the player will expect to be able to move left, right, forward, backward, and
possibly look up or down. While these are many more controls to keep track of, the
basic concepts that you learned for Star Fighter still apply.

12

J. F. DiMarzio, Practical Android 4 Games Development
© J. F. DiMarzio 2011Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 288

Let’s borrow some code for Star Fighter and quickly adapt it to move the player forward
through the corridor.

Currently, your BlobhunterActivity should appear as follows:

package com.proandroidgames;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;

public class BlobhunterActivity extends Activity {
 private BHGameView gameView;

 @Override
 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 gameView = new BHGameView(this);
 setContentView(gameView);
 BHEngine.context = this;
 }
 @Override
 protected void onResume() {
 super.onResume();
 gameView.onResume();
 }

 @Override
 protected void onPause() {
 super.onPause();
 gameView.onPause();
 }

}

You are going to adapt the onTouchEvent() method that you created in Star Fighterto
handle a forward motion as well.

NOTE: In this chapter, you will only add the forward motion control. However, you can easily

adapt the control to also handle backward motion.

Before you add in your onTouchEvent() method, you need to add a few constants to
BHEngine.

Editing BHEngine
The goal here is to help you track what the player is trying to do and where the player is
in the environment. To do so, add the following lines to your BHEngine.java file:

public static final int PLAYER_FORWARD = 1;
public static final int PLAYER_RIGHT = 2;
public static final int PLAYER_LEFT = 3;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 289

public static final float PLAYER_ROTATE_SPEED = 1f;
public static final float PLAYER_WALK_SPEED = 0.1f;
public static int playerMovementAction = 0;

The PLAYER_FORWARD, PLAYER_RIGHT, and PLAYER_LEFT constants will be used to track
what control the player touched, indicating where the player wants to move in the
environment. The PLAYER_ROTATE_SPEED and PLAYER_WALK_SPEED constants indicate how
quickly the view of the player rotates on the y axis and how quickly the player walks in
the environment, respectively. Finally, playerMovementAction tracks which action
(PLAYER_FORWARD, PLAYER_RIGHT, or PLAYER_LEFT) is the current one.

Now that your constants are in place, you can create the control interface in
BlobhunterActivity.java.

Editing BlobhunterActivity
The first code you need to add to BlobhunterActivity is a call to the BHEngine.display
method. You need to initialize the display variable so that the control interface can call it
to determine where on the screen the player has touched.

...

@Override
public void onCreate(Bundle savedInstanceState) {

BHEngine.display = ((WindowManager)
getSystemService(Context.WINDOW_SERVICE)).getDefaultDisplay();

 super.onCreate(savedInstanceState);
 gameView = new BHGameView(this);
 setContentView(gameView);
 BHEngine.context = this;
}

...

With the display initialized, add an onTouchEvent() method to the BlobhunterActivity
class:

...

@Override
public boolean onTouchEvent(MotionEvent event) {
 return false;
}

...

If you still have the Star Fighter project, you can copy and paste the following code
directly from its control interface into the new onTouchEvent() method of Blob Hunter. In
the event that you no longer have the code for the Star Fighter project, feel free to
download the completed project from the Apress web site.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 290

CAUTION: If you are going to copy and paste from the Star Fighter project, be sure to rename the

proper constants and variables to correspond to those in the Blob Hunter project.

...

@Override
public boolean onTouchEvent(MotionEvent event) {
 float x = event.getX();
 float y = event.getY();

 int height = BHEngine.display.getHeight() / 4;
 int playableArea = BHEngine.display.getHeight() - height;

 if (y > playableArea){
 switch (event.getAction()){
 case MotionEvent.ACTION_DOWN:
 if(x < BHEngine.display.getWidth() / 2){
 BHEngine.playerMovementAction =
BHEngine.PLAYER_LEFT;
 }else{
 BHEngine.playerMovementAction =
BHEngine.PLAYER_RIGHT;
 }
 break;
 case MotionEvent.ACTION_UP:
 BHEngine.playerMovementAction = 0;
 break;
 }
 }

 return false;
}

...

Next, let’s add the control for detecting forward motion.

Letting Your Player Move Forward
Right now, the onTouchEvent() uses the y >playableAreacondition to detect if the player
has touched the lower portion of the screen. Add an else statement to detect a touch to
the upper portion of the screen. You will use this touch to the upper portion of the
screen to determine that the user wants to move forward.

...

@Override
public boolean onTouchEvent(MotionEvent event) {
 float x = event.getX();
 float y = event.getY();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 291

 int height = BHEngine.display.getHeight() / 4;
 int playableArea = BHEngine.display.getHeight() - height;

 if (y > playableArea){
 switch (event.getAction()){
 case MotionEvent.ACTION_DOWN:
 if(x < BHEngine.display.getWidth() / 2){
 BHEngine.playerMovementAction =
BHEngine.PLAYER_LEFT;
 }else{
 BHEngine.playerMovementAction =
BHEngine.PLAYER_RIGHT;
 }
 break;
 case MotionEvent.ACTION_UP:
 BHEngine.playerMovementAction = 0;
 break;
 }
 }else{
 switch (event.getAction()){
 case MotionEvent.ACTION_DOWN:
 BHEngine.playerMovementAction = BHEngine.PLAYER_FORWARD;
 break;
 case MotionEvent.ACTION_UP:
 BHEngine.playerMovementAction = 0;
 break;
 }
 }

 return false;
}

...

All you are doing in this new code is detecting if the player has touched the upper
portion of the screen, and if so, you set the playerMovementAction to PLAYER_FORWARD.

Keep in mind, when you are creating a full game, that you will want to tweak this slightly
to also account for a backward touch control, and possibly some panning up or down
controls. In the next section, you are going to react to these controls in the
BHGameRenderer class and move the player accordingly through the corridor.

Moving Through the Corridor
Moving through the corridor is a little tricky, but with some practice, you can create a
control system that is smooth and stable. Admittedly, you would be able to optimize a
great camera system if you were adept enough at OpenGL to create your own matrices
and perform your own matrix multiplication. However, from the beginning of this book,
the goal has been to let you use OpenGL’s built-in tools as a substitute for the learning
curve of manual processes.

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 292

Open BHGameRenderer.java, which is where your game loop code is stored. The first
thing you will need to do is add a couple of variables to help track the player’s location.

...

public class BHGameRenderer implements Renderer{
private BHCorridor corridor = new BHCorridor();
private float corridorZPosition = -5f;

 private float playerRotate = 0f;

 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

...

The corridorZPosition variable is initially set to –5. This represents the initial location of
the player in the corridor. The value of –5 should set the player at the end of the corridor,
because the corridor, as you have set it in the BDCorridor class, extends toward the 4
units on the z axis. Therefore, starting the play at –5 (or 5 units toward the player/screen)
will give the appearance that the player is standing at the entrance of the corridor.

Next, locate the drawCorridor() method that you created in the previous chapter, and
erase all of its contents except for the call to the corridor’s draw() method, as follows:

private void drawCorridor(GL10 gl){

corridor.draw(gl);

}

Using a switch…case statement, similar to the one in Star Fighter, you will detect which
action the player is trying to take. However, how do you react to a forward motion if that
is what the player wants to do?

In the Star Fighter project, you had to move the player only left or right. Both movements
were accomplished by a positive or negative value on the x axis. However, in a 3-D
environment adding or subtracting on the x axis would result is a sideways, or strafing,
motion, and that is not what you are going for here. You want to move the player
forward and let them turn their head to the left or right. These are vastly different
motions from those you used in Star Fighter.

To move the player forward, you are going to add values to the z axis. Recall that you
are looking at the corridor along the z axis, and the 0 value for the z axis of the corridor
is at the far wall. Therefore, you are starting at –5 (see the corridorZPosition variable)
and moving to 0.

To simulate turning the player’s head, you will need to rotate, not translate, along the y
axis: you do not actually want to move along the y or x axis; rather, just like turning your
head in real life, you want to rotate on the axis.

Add a switch . . . case statement to adjust the corridorZPositon and
playerRotatevalues accordingly. This is the same process used in Star Fighter, so it will

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 293

not be discussed in detail. If it does not look familiar, check back trough the Star Fighter
code in Chapter 5.

private void drawCorridor(GL10 gl){

 switch(BHEngine.playerMovementAction){
 case BHEngine.PLAYER_FORWARD:
 corridorZPosition += BHEngine.PLAYER_WALK_SPEED;
 break;
 case BHEngine.PLAYER_LEFT:
 playerRotate -= BHEngine.PLAYER_ROTATE_SPEED;
 break;
 case BHEngine.PLAYER_RIGHT:
 playerRotate += BHEngine.PLAYER_ROTATE_SPEED;
 break;
 default:
 break;
 }

 corridor.draw(gl);

}

In the next section, you will adjust the player’s position, or view, while moving down the
corridor.

Adjusting the View of the Player
As discussed earlier, OpenGL has no concept of a camera like some 3-D systems do.
Rather, you are tricking your way through making the environment look a certain way to
the player, so to speak.

The same translations and rotations that you used in Star Fighter to move 2-D models in
the scene will also be used to rotate and translate the corridor so that the player will
believe he or she is walking through it.

Add a translate to the drawCorridor() method that will move the model along the z axis,
and add a rotate that will turn the model corresponding to where the player is looking.

private void drawCorridor(GL10 gl){

 switch(BHEngine.playerMovementAction){
 case BHEngine.PLAYER_FORWARD:
 corridorZPosition += BHEngine.PLAYER_WALK_SPEED;
 break;
 case BHEngine.PLAYER_LEFT:
 playerRotate -= BHEngine.PLAYER_ROTATE_SPEED;
 break;
 case BHEngine.PLAYER_RIGHT:
 playerRotate += BHEngine.PLAYER_ROTATE_SPEED;
 break;
 default:

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 294

 break;
 }

 GLU.gluLookAt(gl, 0f, 0f, 0.5f, 0f, 0f, 0f, 0f, 1f, 0f);
 gl.glTranslatef(-0.5f, -0.5f, corridorZPosition);
 gl.glRotatef(playerRotate, 0.0f,1.0f, 0.0f);

 corridor.draw(gl);

}

Compile and run your code; you should now have a rudimentary navigation system to
move forward and turn left and right. With a little work using the skills you have already
learned, you can easily add some collision detection to keep the player from walking
through the walls. Try these examples on your own:

� Add a navigation control to allow the player to backup through the
corridor. Here’s a hint for doing this: create a touch even on the screen
that will subtract a given integer value from the current z axis position
when touched.

� Create collision detection system to keep the player from walking
through the walls. Here’s your hint on this one: track the player’s
current axis positions and test them against the known positions of the
corridor walls. Remember that the corridor walls will not move.
Something like this might help you:

if corridorZPosition <= -5f){
 corridorZPosition = -5f;
}
if corridorZPosition >= 0f){
 corridorZPosition = 0f;
}

� Create a navigation system to let the player look up and down in the
environment. As a hint on this task, consider that it sounds more
difficult than it is. Simply add a touch event that will either add or
subtract values from a new rotation on the x axis. This will pivot the
player’s field of view up or down.

You have the skills needed to create a fully functional 3-D game, and surprisingly
enough, they were the same skills you used to create a fully functional 2-D game; you’ve
just added more details.

Summary
I hope you enjoyed this primer into the basic skills required to create some enjoyable
casual games and that you continue to practice and expand on those skills. There is so
much more to OpenGL ES and Android Ice Cream Sandwich than what was covered in

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 295

this book, but you now have a great base of knowledge that will help you plot your
course further into the world of Android game development.

Reviewing the Key 3-D Code
The listings that follow contain all of the code needed to double check your work in the
event that you are having a problem getting Blob Hunter to run correctly. I have selected
the BHEngine.java, BHCorridor.java, and BHGameRenderer.java. These files either
touch the most code—like the BHEngine, contain complicated concepts—like the
BHCorridor, or perform the most functionality—like the BHGameRenderer.

The first file that you can check is the BHEngine.java, shown in Listing 12–1. BHEngine
is the key settings file and it contains the settings used throughout the project. Because
this file is used so extensively in the Blob Hunter project, it has the greatest likelihood to
cause problems when you compile.

Listing 12–1. BHEngine.java

package com.proandroidgames;

import android.content.Context;
import android.view.Display;

public class BHEngine {
 /*Constants that will be used in the game*/
 public static final int GAME_THREAD_DELAY = 4000;
 public static final int GAME_THREAD_FPS_SLEEP = (1000/60);
 public static final int BACK_WALL = R.drawable.walltexture256;
 public static final int PLAYER_FORWARD = 1;
 public static final int PLAYER_RIGHT = 2;
 public static final int PLAYER_LEFT = 3;
 public static final float PLAYER_ROTATE_SPEED = 1f;
 public static final float PLAYER_WALK_SPEED = 0.1f;
 /*Game Variables*/
 public static int playerMovementAction = 0;
 public static Context context;
 public static Display display;
}

Listing 12–2 shows the BHCorridor.java file. This file could cause you problem because
it contains a code concept that is not only abstract, but was not covered previously in
Part 1 of this book. The structure of the vertices[] and texture array is key to the
functionality of the entire project. If the arrays are not setup correctly, the project will not
run as expected, if at all. When checking this file, pay close attention to the arrays and
the array definitions.

Listing 12–2. BHCorridor.java

import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 296

import javax.microedition.khronos.opengles.GL10;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;

public class BHCorridor {

 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;

 private int[] textures = new int[1];

 private float vertices[] = {
 -2.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 -2.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,

 1.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 5.0f,
 1.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 5.0f,

 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 5.0f,
 0.0f, 1.0f, 1.0f,
 0.0f, 1.0f, 5.0f,

 -2.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 1.0f,
 -2.0f, 1.0f, 1.0f,
 0.0f, 1.0f, 1.0f,
 };

 private float texture[] = {
 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

 -1.0f, 0.0f,
 1.0f, 0f,
 -1f, 1f,
 1f, 1.0f,

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 297

 };

 public BHCorridor() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);
 }

 public void draw(GL10 gl) {

 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
 gl.glFrontFace(GL10.GL_CCW);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0,4);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 4,4);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 8,4);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 12,4);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }

 public void loadTexture(GL10 gl,int texture, Context context) {
 InputStream imagestream =
context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {

 bitmap = BitmapFactory.decodeStream(imagestream);

 }catch(Exception e){

 }finally {
 try {
 imagestream.close();
 imagestream = null;
 } catch (IOException e) {

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 298

 }
 }

 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
GL10.GL_REPEAT);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
GL10.GL_REPEAT);

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

 bitmap.recycle();
 }
 }

The final key file in the Blob Hunter is the BHGameRenderer.java. This file contains the
game loop for the Blob Hunter game. Just as with Star Fighter, the game loop is the
most likely place for a code problem because it has the most code of any file in the
project. Listing 12–3 provides the source for the BHGameRenderer.java.

Listing 12–3. BHGameRenderer.java

 package com.proandroidgames;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;
import android.opengl.GLU;

public class BHGameRenderer implements Renderer{
 private BHCorridor corridor = new BHCorridor();
 private float corridorZPosition = -5f;
 private float playerRotate = 0f;

 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 @Override
 public void onDrawFrame(GL10 gl) {
 loopStart = System.currentTimeMillis();
 // TODO Auto-generated method stub
 try {
 if (loopRunTime < BHEngine.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(BHEngine.GAME_THREAD_FPS_SLEEP -
loopRunTime);
 }
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 299

 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 drawCorridor(gl);

 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));

 }

 private void drawCorridor(GL10 gl){

 if (corridorZPosition <= -5f){
 corridorZPosition = -5f;
 }
 if (corridorZPosition >= 0f){
 corridorZPosition = 0f;
 }

 switch(BHEngine.playerMovementAction){
 case BHEngine.PLAYER_FORWARD:
 corridorZPosition += BHEngine.PLAYER_WALK_SPEED;
 break;
 case BHEngine.PLAYER_LEFT:
 playerRotate -= BHEngine.PLAYER_ROTATE_SPEED;
 break;
 case BHEngine.PLAYER_RIGHT:
 playerRotate += BHEngine.PLAYER_ROTATE_SPEED;
 break;
 default:
 break;
 }

 GLU.gluLookAt(gl, 0f, 0f, 0.5f, 0f, 0f, 0f, 0f, 1f, 0f);
 gl.glTranslatef(-0.5f, -0.5f, corridorZPosition);
 gl.glRotatef(playerRotate, 0.0f,1.0f, 0.0f);

 corridor.draw(gl);

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub

 gl.glViewport(0, 0, width,height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 GLU.gluPerspective(gl, 45.0f, (float) width / height, .1f, 100.f);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

CHAPTER 12: Navigating the 3-D Environment 300

 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST);
 gl.glDisable(GL10.GL_DITHER);

 corridor.loadTexture(gl, BHEngine.BACK_WALL, BHEngine.context);

 }

}

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

 301

Index

■ A�
Android gaming, 3

Angry Birds/World of Warcraft, 6
collaborative environment, 7
2-D and 3-D game development, 10
development tools

developer site, 11, 12
Eclipse.org, 10, 11
IDE, 10
OpenGL ES installation, 12–14
SDK download and install, 12

familiarity and lack of power, 4
full-time game developer, 6
game-development companies, 6
Java packages, 3
recoding, 7
RPG, 5
SDK, 4
Star Fighter game, 5
story writing, 10

game play details, 9
John Black character, 8, 9
Spy Hunter, 8
well-formatted Microsoft Word

document, 7
version selection, 14

Android ImageView, 74

■ B�
Background rendering

bitmap, 74
3-D effect, 74
finished backgrounds, 74
game activity, 75

game textures, 82, 83
game view creation, 76, 77
GLSurfaceView, 79
image loading

backgroundstars.png, 86
2-D graphics, 86
draw() method, 96
loadTexture() method, 90–92, 95,

96
Motorola Droid model phone, 86
R.java file, 86
res/drawable-[density] folders, 86
res/drawable-nopi folder, 86
SFBackground.loadTexture()

method, 87
texture mapping, 92, 94
vertices, textures, and indices,

88–90
onDrawFrame() method, 80
onResume() and onPause(), 77, 79
onSurfaceChanged() method, 80
OpenGL Surface creation, 80–82
quick thread pausing routine

game loop, 114, 116
GLSurfaceView renderer, 113
main menu, 117
onDrawFrame() method, 113
OpenGL buffers, 116, 117
SFEngine, 113

scrolling, 74
bgScroll1, 98
matrix modes, 99
OpenGL Matrices, 99–101
scrollBackground1() method, 97
texture transformation, 101, 103,

104

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

Index 302

second layer, 105, 106
bgScroll1 and bgScroll2, 105
cumulative scrolling factor, 105
debris.png, 104
float constant, 104
game-specific code, 105
loadTexture() method, 104
model matrix, 109–111
scrollBackground2() method,

111, 112
scrolling method, 107, 108
texture loading, 106, 107

SFGame.java, 75
SFGameRenderer, 79
surface rendering, 84, 85

Bezier Curve
Cartesian points, 170
enemies class, 175
getNextScoutY() method, 171
left-hand side attacking, 172
quadratic, 170
SFEnemy() class, 171
SFGoodGuy class, 172
Star Fighter game, 170
t factor, 170
x axis value, 170
y axis value, 170

BHCorridor class
arbitrary texture, 275
BHGameRenderer.java file, 284
Blob Hunter project, 274
3-D corridor, 274
draw() method, 280–283
drawCorridor() method, 284
gluLookAt(), 284
L shaped corridor, 274, 275
texture[] array, 277–279
vertices[] array, 274–276
wall texture addition, 283, 284

BHWalls class
code segment, 272
glTranslatef(), 272
OpenGL, 273
square wall shape, 271
unobstructed 360-degree view, 272
unobstructed portions, 271

Blob Hunter, 287
Blob Hunter 3-D game

BHEngine class, 259, 260
BHGameRenderer, 258, 259
BHGameView, 257
BHWalls class

creation, 261–263
instantiation, 263, 264

BlobhunterActivity.java, 256, 257
constant creation, 260
vs. 2-D games, 255, 256
drawable-nodpi folder, 260
drawBackground() method, 267–269
finishing touches, 269, 270
glOrthof() method, 265
gluPerspective() method, 266, 267
key parts, 256
loadTexture() method, 264
scout image, 260

■ C�
Character creation, 119

character moving method, 143
draw() method, 142, 143
GL10, SFGameRenderer, 132
glScalef() function, 133
goodGuyBankFrames increment,

141
if else statement, 142
left movement, 138–140
matrix model view, 134
movePlayer1() method, 133
PLAYER_RELEASE action,

136–138
playerBankPosX variable, 134
right movement, 146, 148
right-banking animation, 148–150
second frame, animation, 143,

145, 146
sprite sheet, 140, 141
switch statement, 133
texture matrix, 135, 140

FPS delay adjustment, 156, 157
game loop setting, 131, 132

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

Index 303

loading a texture
game loop, 129, 130
PLAYER_BANK_LEFT_1, 129
PLAYER_BANK_LEFT_2, 129
PLAYER_FRAMES_BETWEEN_A

NI, 129
PLAYER_RELEASE, 129
player’s ship, 130
playerFlightAction variable,

127–129
SFGameRenderer.java file, 131

SFGoodGuy() class, 122, 123
sprite animation

flip-book style effect, 120
glTranslateF() function, 121
Mario Brothers, 120
OpenGL render, 121
sprite sheet, 121
Star Fighter, 120
textures, 120
time-honored tools, 119

texture mapping arrays
draw() method, 124
full texture mapping, 124
loadTexture() method, 126, 127
SFBackground class, 124, 126

touch event
ACTION_UP and ACTION_DOWN

trapping, 154–156
MotionEvent parsing, 152–154
onTouchEvent() listener, 151, 152
SFGame.java, 151

two-layer background scroll, 119
vertices array, 123

■ D
3-D environment navigation

BHGameRenderer.java, 292
camera system, 291
control interface

BHEngine editing, 288
BlobhunterActivity, 288–291
onTouchEvent() method, 288
Star Fighter, 287

corridorZPosition variable, 292

drawCorridor() method, 292
forward motion, 292
matrix multiplication, 291
OpenGL built-in tools, 291
player view adjustment, 293, 294
playerRotate variable, 292
switch case statement, 292

3-D first-person gaming, 272
2-D Star Fighter, 287

■ E�
Enemy artificial intelligence

enemies[] array loop, 185, 186
enemyType property, 186
initialization, 182, 183
interceptor

players position locking, 189–191
slope formula, 191, 193–198
Star Fighter, 187
vertices adjustment, 188, 189

logic creation, 179, 181, 182
moveEnemy() method, 185
scout, 198

Bezier curve, 201–203
random point, 199, 200

SFGameRenderer(), 177
sprite sheet loading, 183, 184
spriteSheets[] array, 178
TOTAL_INTECEPTORS, 177
TOTAL_SCOUTS, 177
TOTAL_WARSHIPS, 177
warship, 203, 205

Enemy class
common sprite sheet, 165
creation, 164
2-D gaming, 165
SFEnemy class creation

attack direction, 166
ATTACK_LEFT, 167
ATTACK_RANDOM, 167
ATTACK_RIGHT, 167
Bezier curve, 170
case statement, x-axis starting

point, 169
constructor, 167

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

Index 304

indication, 167
interceptor, locks, 168
posT, 169
scrolling shooters, 168
SFEnemy(), 166
SFEngine creation, 168
swift, predictable pattern, 168
TYPE_INTERCEPTOR, 167
TYPE_SCOUT, 167
TYPE_WARSHIP, 167
warship maneuvers, random

pattern, 168
x and y positioning, 166

SFEnemy() package, 166
SFEngine class, 165

■ F�
Frames per second (FPS) delay, 156,

157

■ G, H�
Game publishing

AndroidManifest file, 243, 244
icon, 244
keystore

apk file, 251
4-bit boundaries, 252
creation window, 250, 251
destination and key/certificate

checks window, 251, 252
selection window, 249, 250

project checks, 248, 249
project selection window, 247, 248
sign, align, and release, 244, 246,

247
versionCode and versionName, 244

■ I�
Integrated development environment

(IDE), 10

■ J, K, L�
Java class transformation

Android activity, 30
AndroidManifest.xml, 30
application nodes section, 31
attribution, activity, 31, 32
menu activity, 34
name attribute selector, 33
new element creation, 31
quick review, 34
screen orientation setting, 34
SFMainMenu activity, 32
snippet XML code, 31
StarfighterActivity, 33

■ M, N�
Motorola Droid model phone, 86
moveEnemy() method, 205

■ O, P, Q�
onDrawFrame() method, 205
OpenGL graphics, 13
OpenGL standard, 74

■ R�
Role-playing game (RPG), 5

■ S�
SFGame.java, 75
Silicon Graphics, 12
Software development kit (SDK), 4
Splash screen

benefits, 37
dragging image, 37
fade effects creation

accelerate_interpolator, 46
alpha animation, 46
android:duration property, 46
android-fromAlpha and android-

toAlpha properties, 47
animation, 45

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

Index 305

decelerate_interpolator, 47
fadein.xml file, 45
fadeout.xml file, 45
interpolator, 46

game threading
Android activities, architecture,

48
creation, 49–51
killing activity, 52, 54
new intent setting, 51, 52
processor-intensive, 48
running games, 48

image creation, 35, 36
image importing, 36
layout file creation

Android XML File, 38, 39
FrameLayout, 40
image and text adding, 41–43
image display, 38
StarfighterActivity connection,

43–45
XML file editing, 39

nine-patch graphics, 36
nine-patch screen, 35
working, R.java file, 37, 38

Sprite sheet
adding, SFEngine class, 165
common sprite sheet, 165
2-D gaming, 165
good_guy sprite sheet, remove, 165
midgame housekeeping, 159, 160
SFEnemy class creation

attack direction, 166
ATTACK_LEFT, 167
ATTACK_RANDOM, 167
ATTACK_RIGHT, 167
Bezier curve, 170 (see also Bezier

Curve)
case statement, x-axis starting

point, 169
constructor, 167
indication, 167
interceptor, locks, 168
posT, 169
scrolling shooters, 168
SFEnemy(), 166

SFEngine creation, 168
swift, predictable pattern, 168
TYPE_INTERCEPTOR, 167
TYPE_SCOUT, 167
TYPE_WARSHIP, 167
warship maneuvers, random

pattern, 168
x and ypositioning, 166

SFEnemy(), 166
Star Fighter, 187
Star Fighter 2D arcade shooter, 27

Android platform, 27
layouts setting, 56–58
main menu creation

button images adding, 54
exit button rest state, 54
layout folder, 55
layout_width and height

properties, 55
pressed state exit button, 55
pressed state start button, 54
RelativeLayout layout, 55
start button, rest state, 54

music
AndroidManifest, 69
background music, 61
housekeeping function, 61
isRunning Boolean, 65, 67
MediaPlayer, 65, 66
musicThread(), 69
onCreate() method, 66
playing, 69, 71
raw folder, 62
service, 64, 65
SFMainMenu.java, 70
SFMusic service, 69
SPLASH_SCREEN_MUSIC, 63
variable, R_VOLUME and

L_VOLUME, 63
warfieldedit.ogg, menu, 63

onClickListeners, 60, 61
screen, 28
splash screen

activity creation, 28
game main menu, 28

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

Index 306

Java class transformation (see
Java class transformation)

new Java class creation, 29
programe building, 27

wiring buttons, 58, 60
Star Fighter, 2-D shooter, 15

AF-718, 15
Captain John Starke, 15
game creation, 18
game details, 17
game engine, 18–20
game-specific code, 20, 22, 23
Kordark Interceptors, 16
Kordark invasion fleet, ships, 16
Kordark Scouts, 16
Larash War Ships, 16
new Android project wizard, 24
project name, 24, 25
Star Fighter engine, 23
“Use default location” check box, 26

■ T, U, V�
Texture class

glBindTextures() method, 163
glGenTextures() method, 162
loadTexture() method, 160
SFBackground() class, 162
SFGameSFGameRenderer() class,

164
SFGoodGuy() class, 160, 162

SFTextures(), 161
textureNumber parameter, 163

■ W, X, Y, Z�
Weapon

collision detection
applyDamage() method, 222
collision damage, 219, 220
detectCollisions() Method, 220,

221
void shots removal, 222, 224

2-D collision detection, 207
firePlayerWeapons() method, 214,

215, 218, 219
initialization, 213, 214
screen, edge detection, 215–218
SFWeapon() array, 211
sprite sheet, 208, 212

INTERCEPTOR_SHIELDS
constant, 208

PLAYER_BULLET_SPEED
constant, 208

SFEngine.java file, 208
SFWeapon class, 209–211
SHOUT_SHIELDS, 208
space-fighting weapon, a blaster,

207
WARSHIP_SHIELDS constant,

208
WEAPONS_SHEET constant, 208

Download at www.conquerthenext.com

http://www.conquerthenext.com/
http://www.conquerthenext.com/

	GetFullPageImage
	front-matter
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Foreword
	About the Author
	About the Technical Reviewers
	About the Game Graphics Designer
	Acknowledgments
	Preface

	front-matter(1)
	fulltext
	Chapter 1 Welcome to Android Gaming
	Programming Android Games
	Starting with a Good Story
	Why Story Matters
	Writing Your Story

	The Road You’ll Travel
	Gathering Your Android Development Tools
	Installing OpenGL ES

	Choosing an Android Version
	Summary

	fulltext(1)
	Chapter 2 Star Fighter : A 2-D Shooter
	Telling the Star Fighter Story
	What Makes a Game?
	Understanding the Game Engine
	Understanding Game-Specific Code
	Exploring the Star Fighter Engine

	Creating the Star Fighter Project
	Summary

	fulltext(2)
	Chapter 3 Press Start: Making a Menu
	Building the Splash Screen
	Creating an Activity
	Creating a New Class
	Transforming the Class to an Activity

	Creating Your Splash Screen Image
	Importing the Image

	Working with the R.java File
	Creating a Layout File
	Editing the XML File
	Using FrameLayout
	Adding an Image and Text
	Connecting StarfighterActivity with the Layout

	Creating Fade Effects
	Threading Your Game
	Creating the Game Thread
	Setting a New Intent
	Killing the Activity

	Creating the Main Menu
	Adding the Button Images
	Setting the Layouts
	Wiring the Buttons
	Adding onClickListeners

	Adding Music
	Creating a Music Service
	Playing Your Music

	Summary

	fulltext(3)
	Chapter 4 Drawing The Environment
	Rendering the Background
	Creating the Creating the Creating the
	Creating a Game View
	Using onResume() and onPause()

	Creating a Renderer
	Creating your OpenGL Surface
	Loading Game Textures
	Rendering the Surface

	Loading an Image Using OpenGL
	Vertices, Textures, and Indices . . . Oh My!
	Creating the loadTexture() Method
	Mapping Your Texture
	Calling loadTexture() and draw()

	Scrolling the Background
	OpenGL Matrices
	Transforming the Texture

	Adding a Second Layer
	Loading a Second Texture
	Scrolling Layer Two
	Working with the Matrices
	Finishing the scrollBackground2() Method

	Running at 60 Frames per Second
	Pausing the Game Loop
	Clearing the OpenGL Buffers

	Modify the Main Menu
	Summary

	fulltext(4)
	Chapter 5 Creating Your Character
	Animating Sprites
	Loading Your Character
	Creating Texture Mapping Arrays
	Loading a Texture onto Your Character
	Setting Up the Game Loop

	Moving the Character
	Drawing the Default State of the Character
	Coding the PLAYER_RELEASE Action
	Moving the Character to the Left
	Loading the Correct Sprite
	Loading the Second Frame of Animation
	Moving the Character to the Right
	Loading the Right-Banking Animation

	Moving Your Character Using a Touch Event
	Parsing MotionEvent
	Trapping ACTION_UP and ACTION_DOWN

	Adjusting the FPS Delay
	Summary

	fulltext(5)
	Chapter 6 Adding the Enemies
	Midgame Housekeeping
	Creating a Texture Class
	Creating the Enemy Class
	Adding a New Sprite Sheet
	Creating the SFEnemy Class
	The Bezier Curve

	Summary

	fulltext(6)
	Chapter 7 Adding Basic Enemy Artificial Intelligence
	Getting the Enemies Ready for AI
	Creating Each Enemy’s Logic
	Initializing the Enemies
	Loading the Sprite Sheet

	Reviewing the AI
	Creating the moveEnemy() Method
	Creating an enemies[] Array Loop
	Moving Each Enemy Using Its AI Logic

	Creating the Interceptor AI
	Adjusting the Vertices
	Locking on to the Player’s Position
	Implementing a Slope Formula

	Creating the Scout AI
	Setting a Random Point to Move the Scout
	Moving Along a Bezier Curve

	Creating the Warship AI
	Summary

	fulltext(7)
	Chapter 8 Defend Yourself!
	Creating a Weapon Sprite Sheet
	Creating a Weapon Class

	Giving Your Weapon a Trajectory
	Creating a Weapon Array
	Adding a Second Sprite Sheet
	Initializing the Weapons
	Moving the Weapon Shots
	Detecting the Edge of the Screen
	Calling the firePlayerWeapons() Method

	Implementing Collision Detection
	Applying Collision Damage
	Creating the detectCollisions() Method
	Detecting the Specific Collisions
	Removing Void Shots

	Expanding on What You Learned
	Summary
	Reviewing the Key 2-D Code

	fulltext(8)
	Chapter 9 Publishing Your Game
	Preparing Your Manifest
	Preparing to Sign, Align, and Release
	Checking the Readiness of AndroidManifest
	Creating the Keystore

	Summary

	front-matter(2)
	fulltext(9)
	Chapter 10 Blob Hunter : Creating 3-D Games
	Comparing 2-D and 3-D Games
	Creating Your 3-D Project
	BlobhunterActivity.java
	BHGameView
	BHGameRenderer
	BHEngine

	Creating a 3-D Object Test
	Creating a Constant
	Creating the BHWalls Class
	Instantiating the BHWalls Class
	Mapping the Image
	Using gluPerspective()
	Creating the drawBackground() Method
	Adding the Finishing Touches

	Summary

	fulltext(10)
	Chapter 11 Creating an Immersive Environment
	Using the BHWalls class
	Creating a Corridor from Multiple BHWalls Instances

	Using the BHCorridor Class
	Building the BHCorridor Class
	Building Multiple Walls with the vertices[] Array
	Creating the texture[] Array
	Creating the draw() Method

	Adding a Wall Texture

	Calling BHCorridor
	Summary

	fulltext(11)
	Chapter 12 Navigating the 3-D Environment
	Creating the Control Interface
	Editing BHEngine
	Editing BlobhunterActivity
	Letting Your Player Move Forward

	Moving Through the Corridor
	Adjusting the View of the Player

	Summary
	Reviewing the Key 3-D Code

	back-matter
	Index

